跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱治中
Chih-chung Chiu
論文名稱: 阻抗性生物感測器的形狀對靈敏度的影響之二維電場模擬
Two-dimensional Electric-field Simulation for Effect of Electrode Geometry on Sensitivity of Impedimetric Biosensor
指導教授: 蔡章仁
Jang-zern Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系在職專班
Executive Master of Electrical Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 150
中文關鍵詞: 指叉形電極阻抗式生物感測器靈敏度電極結構
外文關鍵詞: Geometry, Sensitivity, Impedimetric Biosensor, Interdigitated electrode
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物晶片技術其主要特點是可靠性高、精確性高、分析速度快、所使用的樣品及試劑少,就可獲得相關的樣品資訊。由於阻抗式生物感測器不斷朝向微小化目標邁進,可以使巔峰阻抗變大讓待測物更容易檢測,但電極的結構形狀卻會影響其晶片之量測特性,而無法得到有效之晶片的設計下將阻礙生物感測器的發展。針對不同的待測物如細胞、人類遺傳基因及蛋白質,因其粒子大小、介電係數或是濃度不同,因此待測物放置在不同的電極形狀結構時,所量測到的各項樣品資訊也會有不同的結果產生。因此本研究設計模擬了五種不同形狀的電極結構: 指叉形電極、長方形電極、圓形電極、三角形電極和碟形電極。故本文嘗試以ADS電磁模擬套裝軟體對於不同電極形狀做各種不同特性模擬研究,其中包括阻抗值及電容值的大小變化差異、電場強度分佈、靈敏度高低和待測物放置位置不同的阻抗變化模擬研究分析,進而讓設計者以這些模擬的各項數據為參考,依照不同的量測項目去設計最佳化的電極結構。最後由模擬數據可以得知五種電極的電容值大小,指叉形電極為1.600×10-14F、長方形電極為1.086×10-14F、圓形電極為6.513×10-15F、三角形電極為6.576×10-15F和碟形電極為9.924×10-15F。另外將待測物分子區分成會移動或是不會移動的情況,指叉形電極因兩電極間電場強度為均勻分佈,適合量測不會移動的待測物,當待測物放置在不同位置且電場強度相同時,其阻抗變化率只有 0.19%。而三角形電極因電極間電場強度和周圍不同,所以適合量測會移動的待測物,當待測物放置在不同位置且電場強度不相同時,其阻抗變化率為 4.54%,因此可以用來偵測待測物移動位移量,而指叉形電極和三角形電極在偵測待測物在不同位置的阻抗變化,三角形的阻抗變化為指叉形電極的 23 倍。另外指叉形電極的靈敏度為這幾種電極中最為靈敏的可達到 60.34 %,為本研究中阻抗變化最靈敏的電極結構。故可參考以上五種不同結構電極的靈敏度結果,配合實際硬體電極結構製作最佳靈敏度的電極結
    構。


    This research studied five different designs of electrode-pair geometry for impedimetric biosensing applications. These included interdigitated, rectangular, circular, triangular, and dish electrode pairs. ADS (Advanced Design System) software was utilized to simulate these different electrode-pair designs on their impedance, capacitance, and electric intensity. The simulated capacitances of these five electrode-pair geometries of commensurate dimensions were 1.600 × 10-14 F, 1.086 × 10-14 F, 6.513 × 10-15 F, 6.576 × 10-15 F, 9.924 × 10-15 F, respectively. One of the simulations showed that the electric intensity in the area-of-interest in the interdigitated electrode pair was quasi-uniform. A sensor of this geometry will be insensitive to the movement of the measured object. An impedance change of merely 0.19% was caused by changing location of the measured object. The electric intensity in the area-of-interest in the triangular electrode pair was non-uniform. A sensor of this geometry will be able to sense the movement of the measured object. An impedance change of up to 4.54% was caused by changing the location of the measured object. Among the five electrode-pair types, the interdigitated one had the highest sensitivity. Adding measured substance caused 60.43% impedance change from the status with background solution only. The results of this study will be useful for guiding the electrode-pair geometry design of 
    impedimetric biosensors.

    中文摘要 I Abstract III 致謝 IV 目錄 V 第一章 緒論 1 1-1前言 1 1-2 生物感測器介紹 3 1-2-1 歷史介紹 3 1-2-2 組成結構 3 1-3 電化學生物感測器之阻抗特性 7 1-3-1 電路元件參數 7 1-3-2 電泳原理 11 1-3-3 介電電泳原理 13 1-3-4 電路模型結構探討 19 1-3-5 阻抗檢測文獻回顧和原理 22 1-4 阻抗式生物感測器簡介 27 1-4-1 阻抗式電極的等效電路元件 27 1-4-2 阻抗式電極運用範圍 28 1-4-3 阻抗式電極形狀 31 第二章 研究背景 39 2-1 研究動機 39 2-2 研究目標 40 第三章 電阻式生物感測器模擬步驟及實驗方法 41 3-1 電阻特性應於不同結構之生物感測器之模擬研究 41 3-1-1實驗名稱 41 3-1-2實驗目的 41 3-1-3模擬工具 41 3-1-4實驗背景 41 3-1-5實驗方法 46 3-1-6實驗材質選用 49 3-1-7 各種不同電極結構的設計 50 第四章 實驗結果與討論 55 4-1 不同電極結構之阻抗值和電容值模擬 55 4-2 指叉形電極結構 55 4-2-1 指叉形電極結構實驗數據 56 4-2-2 指叉形電極結構的討論 58 4-3 長方形電極結構 61 4-3-1 長方形電極結構實驗數據 62 4-3-2 長方形電極結構的討論 64 4-4 圓形電極結構 67 4-4-1 圓形電極結構實驗數據 68 4-4-2 圓形電極結構的討論 70 4-5-1 三角形電極結構實驗數據 74 4-5-2 三角形電極結構的討論 76 4-6 碟形電極結構 79 4-6-1 碟形電極結構實驗數據 80 4-6-2 碟型電極結構的討論 82 4-7 五種電極結構阻抗值和電容值比較 84 4-8 不同結構電場強度均勻 88 4-9 待測物分子模擬實驗 91 4-9-1待測物分子實驗參數 91 4-9-2待測物分子實驗參數討論 98 4-9-3不同結構形狀且相同面積的靈敏度比較 100 4-9-4 指叉形電極使用不同濃度之PBS和不同待測物阻抗比較 107 4-10 單一待測物分子位置模擬實驗 115 4-10-1 單一待測物位置參數設定 115 4-10-2 單一待測物位置參數討論 118 第五章 結論 120 未來展望 124 參考文獻 125

    [1] 財團法人國家實驗研究院科技政策研究與資訊中心 2005 年市場報告, 來源:Helmut Kaiser Consultancy 2004 2009 年6月20日取自 http://cdnet.stpi.org.tw/techroom/market/bio/bio033.htm http://iknow.stpi.org.tw/Post/Read.aspx?PostID=1003
    [2] L. Clark, C. Lyons, Electrode Systems for Continuous Monitoring in Cardiovascular Surgery, Ann. NY Acad. Sci. 102 (1962) 29-45.
    [3] A. Chaubey, B.D. Malhotra, Mediated biosensors, Biosensors & Bioelectronics    17 (2002) 441–456.
    [4] 謝振傑, 光纖生物感測器文, 物理雙月刊(廿八卷四期)2006年8月。
    [5] P. Bergveld, Development of an Ion-Sensitive Solid-State Device for Neuro- physiological Measurements, IEEE TRANSACTIONS ON BIO-  MEDICAL ENGINEERING (1970) JANUARY.
    [6] X. Huang and D.W. Greve, Impedance Based Biosensor Array for Monitoring Mammalian Cell Behavior.
    [7] Q. Liua, J. Yuc, Impedance studies of bio-behavior and chemosensitivity of    cancer cells by micro-electrode arrays, Biosensors and Bioelectronics 24 (2009)1305–1310.
    [8] L. Yang, Y. Li, Inter-digitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium, Biosensors and Bioelectronics 19 (2004) 1139–1147.
    [9] A. Tiselius, A new apparatus for electrophoretic analysis of colloidal mixtures,    Trans. Faraday. (1937) Soc 33 524.
    [10] 粘正勳,邱聞鋒, 介電泳動─承先啟後的奈米操縱術, 物理雙月刊(廿三卷六期)2004年6月。
    [11] H. Pohl, Dielectrophoresis, Cambridge Univ. Press, Cambridge (1978).
    [12] T.B. Jones, IEEE Engineering in Medicine and Biology Magazine, Nov/Dec (2003) 33-42.
    [13] T.B. Jones, Electromechanics of Particles, New York: Cambridge University Press (1995).
    [14] 賴民峰, 電阻抗分析於自組性單層薄膜之特性評估與其在生物檢測上之應用, 國立成功大學醫學工程研究所碩士論文。
    [15] C. Ruan, L. Yang, and Y. Li, Immuno-biosensor Chips for Detection of Escherichia coli O157:H7 Using Electrochemical Impedance Spectroscopy, Anal Chem. (2002) 74 4814-4820.
    [16] L. Yang, Y. Li, AFM and impedance spectroscopy characterization of the immobilization of antibodies on indium–tin oxide electrode through self-assembled monolayer of epoxysilane and their capture of Escherichia coli O157:H7, Biosensors and Bioelectronics 20 (2005) 1407–1416.
    [17] D. Berdat, A. Marin, DNA biosensor using fluorescence microscopy and impedance spectroscopy, D. Berdat et al. / Sensors and Actuators B 118 (2006) 53–59.
    [18]  J.G. GUAN, Y.Q. MIAO, Q.J. ZHANG, Impedimetric Biosensors, JOURNAL OF BIOSCIENCE AND BIOENGINEERING Vol. 97, No. 4, (2004) 219–226.
    [19] R. Rica, C. Sanchez, A. Baldi, Polysilicon interdigitated electrodes as impedimetric sensors, Electrochemistry Communications 8 (2006) 1239-1244.
    [20] Q. Liua, J. Yuc, Impedance studies of bio-behavior and chemosensitivity of cancer cells by micro-electrode arrays, Biosensors and Bioelectronics 24 (2009) 1305–1310.
    [21] A.G. Saum, R.H. Cumming, F.J. Rowell, Use of substrate coated electrodes and AC impedance spectroscopy for the detection of enzyme activity. Biosens. Bioelectron. 13 (1998) 511–518.
    [22] S. Grant, F. Davis, K.A. Law, A.C. Barton, S.D. Collyer, Label-free and reversible immunosensor based upon an ac impedance interrogation protocol. Anal. Chem. Acta 537 (2005) 163–168.
    [23] K.S. Ma, H. Zhou, J. Zoval, M. Madou, DNA hybridization detection by label free versus impedance amplifying label with impedance spectroscopy. Sens Actuators B 114 (2006) 58–64.
    [24] W.M. Hassena, C. Chaix, A. Abdelghani, An impedimetric DNA sensor based on functionalized magnetic nanoparticles for HIV and HBV detection, Sensors and Actuators B 134 (2008) 755–760.
    [25] N.N. Mishra, S. Retterer, T.J. Zieziulewicz, M. Isaacson, D. Szarowski, D.E. Mousseau, D.A. Lawrence, J.N. Turner, On-chip microbiosensor for the detection of human CD4+ cells based on ac impedance and optical analysis. Biosens. Bioelectron. 21 (2005) 696–704.
    [26] E.E. Krommenhoek, J.G. Gardeniers, J.G. Bomer, A. Van, X. Li, M. Ottens, Monitoring of yeast cell concentration using a micromachined impedance sensor. Sens. Actuators B 115 (2006) 384–389.
    [27] S.M. Radke, E.C. Alocilja, Design and fabrication of a microimpedance biosensor for bacterial detection. IEEE Sens. J. 4 (2004) 434–440.
    [28] R. Oberg, D.T. Morisette, R. Bashir, Impedanc microbiology-on-a-chip: micro-    fluidic bioprocessor for rapid detection of bacterial metabolism. IEEE J. MEMS 14 (2005) 829–838.
    [29] C. Tlili, K. Reybier, Fibroblast Cells: A Sensing Bioelement for Glucose Detection    by Impedance Spectroscopy, Anal. Chem. 75 (2003) 3340-3344.
    [30] M. Cortina, M.J. Esplandiu, S. Alegret, M. del Valle, Urea impedimetric biosensor based on polymer degradation onto inter-digitated electrodes, Sensors and Actuators B 118 (2006) 84–89.
    [31] W.O. Ho, S. Krause, Electrochemical Sensor for Measurement of Urea and Creatinine in Serum Based on ac Impedance Measurement of 11Enzyme -Catalyzed Polymer Transformation, Anal. Chem. 71 (1999) 1940-1946.
    [32] H.I. Arwin, I. Lundstrom, W.D. Stanbro, Electrode desorption method for determination of enzymatic activity. Med. Biol. Eng. Comput. 20 (1982) 362–374.
    [33] J.Bernstein, 1868. Uber den zeitlichen verlanf der negativen schwankung des nervenstroms. The Journal of the Center for Archaeoastronomy 1 173-207.
    [34] F. Patolsky, M. Zayats, E. Katz, I. Willner, “Precipitation of an insoluble product on enzyme monolayer electrodes for biosensor applications:characterization by faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance analysis”, Analytical Chemistry, 71 (1999) 3171-3180.
    [35] 康宏銘, 實驗設計法應用於鈷-鎳-銅氧化物電極氧氣生成之電化學行為, 國立成功大學化學工程研究所碩士論文。
    [36] J G Webster, Adam Hilger, Eelctrical Impedance Tomography, Bristol 1990.
    [37] CMS300 Electrochemical System Operator’s Manual, Gamery Instruments, Inc., USA (1993).
    [38] J. B. Allen, R. F. Larry, “Electrochemical Methods”,John and Sons,Chap.9, 316, New Year, (1980).
    [39] 黃鯤鵬, 以交流阻抗分析法量測高方向性氧化鋅奈米柱陣列電性之研究, 國立成功大學化學工程研究所碩士論文。
    [40] J. M. Miljkovic H., M. Tasic H., S. Rajs, Z. Vukmirovic, “Precipitation onset detection with a rain sensor of improved sensitivity,” Atmospheric Environment 34 (2000) 5175-5181. 
    [41] M. Ucar, H. M. Ertunc, O. Turkoglu, “The Design and Implementation of Rain Sensitive Triggering System for Windshield Wiper Motor,” Electric Machines and Drives Conference, IEMDC (2001)329-336. 
    [42] 許煜政, 蔡習訓, 薄膜阻抗式車窗雨滴感測之初探, 國科會NSC95-2516-S-131-002。
    [43] 感測器原理與應用-吳郎編著, 全華圖書股份有限公司。
    [44]  C. Iliescu, D.P. Poenar, A microfluidic device for impedance spe- Ctroscopy analysis of biological samples, Sensors and Actuators B 123 (2007) 168–176.
    [45] D.P. Poenar, C. Iliescu, Glass-based microfluidic device fabricated by parylene wafer-to-wafer bonding for impedance spectroscopy, Sensors and Actuators A 139 (2007) 162–171.
    [46] S.K. Kim, J.H. Kim, Continuous Low-Voltage dc Electroporation on a Microfluidic Chip with Polyelectrolytic Salt Bridges, Anal. Chem. 79 (2007) 7761-7766
    [47] Y.H. Cho, T.Yamamoto, Y. Sakai, Development of microfluidic device for Electrical Physical Characterization of Single Cell, IEEE (2006) 1057-7157.
    [48] V. Senez, E. Lennon, S. Ostrovidov, T. Yamamoto, H. Fujita, Y. Sakai, and T. Fujii, Integrated 3-D Silicon Electrodes for Electrochemical Sensing in Microfluidic Environments Application to Single-Cell Characterization, IEEE SENSORS JOURNAL, MAY (2008) VOL. 8 NO. 5.
    [49] M. Varshney , Y. Li , A label-free, microfluidics and inter-digitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157 H7 in food samples, Sensors and Actuators B 128 (2007) 99–107.
    [50] L. Yang, Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes, Talanta 74 (2008) 1621–1629.
    [51] Z. Zou, J. Kai, Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement, Sensors and Actuators A 136 (2007) 518–526.
    [52] M. Varshney , Y. Li, Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle–antibody conjugates for detection of Escherichia coli O157 H7 in food samples, Biosensors and Bioelectronics 22 (2007) 2408–2414.
    [53] S.C. Mukhopadhyay, A Novel Planar-Type Biosensor for Non-invasive Meat Inspection, IEEE SENSORS JOURNAL, SEPTEMBER (2007) VOL. 7, NO. 9.
    [54] L. Yang, Y. Li, Interdigitated Array Microelectrode -Based Electrochemical Impedance Immunosensor for Detection of Escherichia coli O157 H7, Anal.  Chem. 76 (2004) 1107-1113.
    [55] W. Laureyn, D. Nelis, P. Van Gerwen, K. Baert, L. Hermans, R. Magnee, J.J. Pireaux, G. Maes, Nanoscaled interdigitated titanium electrodes for impedimetric iosensing, Sensors and Actuators B 68 (2000) 360-370.
    [56] C.C. Lin, L.C. Chen, C.H. Huang, S.J. Ding, C.C. Chang, H.C. Chang,Development of the multi-functionalized gold nanoparticles with electrochemical-based immunoassay for protein A detection, Electroanalytical Cemistry 619-620 (2008) 39-45.
    [57] 易皓文, 探討不同幾何形狀之銀電極萃取DNA之研究, 國科會計畫編號NSC95-2815-C-415-028-B。
    [58] L.S. Jang, M.H. Wang, Micro-fluidic device for cell capture and impedance measurement, Biomed Microdevices (2007) 9 737–743.
    [59] J.W. Wang, M.H. Wang, Effects of electrode geometry and cell location on single-cell impedance measurement, Biosensors and Bioelectronics 25 (2010) 1271–1276.
    [60] C. Berggren, B. Bjarnason, G. Johansson, Capacitive Biosensors, WILEY-VCH    Verlag GmbH, D-69469 Weinheim (2001).
    [61] A.V. MAMISHEV, Interdigital Sensors and Transducers, PROCEEDINGS OF THE IEEE, MAY (2004) VOL. 92, NO. 5.
    [62] P.V. Gerwen, W. Laureyn, Nanoscaled interdigitated electrode arrays for biochemical sensors, Sensors and Actuators B 49 (1998) 73–80.
    [63] A.R.M. Syaifudin, S.C. Mukhopadhyay, P.L. Yu, Electromagnetic Field Computation using COMSOL Multiphysics to Evaluate the Performance of Novel Inter-digital Sensors, IEEE (2009) 978-1-4244-4819.
    [64] J. Hong ,Jpn. J. Appl. Phys, And Corning Glass 7740 Properites, Vol. 43. No. 8A (2004).
    [65] V. Leus, D. Elata, FRINGING FIELD EFFECT IN ELECTROSTATIC ACTUATORS, TECHNICAL REPORT ETR (2004) 2.
    [66] K.S. Su, H.J. Yin, Analysis of Electromagnetic Interference and Shielding Effectiveness for Power Transmission Line, Department of Electrical Engineering National Kaohsiung University of Applied Sciences.
    [67] W. Mitchell, R. Sundararajan, Electric Field Distribution in Biological Tissues for Various Electrode Configurations-A FEMLAB Study, Electronics & Computer Engineering Technology Arizona State University, Mesa, AZ-85212.
    [68] T. Heida, W.L.C. Rutten, E. Marani, Understanding dielectrophoretic trapping of neuronal cells: modelling electric field, electrode–liquid interface and fluid flow, T Heida et al (2002) J. Phys. D: Appl. Phys. 35 1592.
    [69] Dependence of capacitance on electrode configuration for ferroelectric films with interdigital electrodes.
    [70] A.R. Mohd Syaifudin, K. P. Jayasundera , and S. C. Mukhopadhyay, A novel planar interdigital sensor based sensing and instrumentation for detection of dangerous contaminated chemical in seafood, IEEE (2009) 978-1-4244-3353.
    [71] A.R.M. Syaifudin, M.A. Yunus, S.C. Mukhopadhyay, A Novel Planar Interdigital Sensor for Environmental Monitoring, IEEE (2009) 978-1-4244-5335.
    [72] A.R.M. Syaifudin, P.L. Yu,S. C. Mukhopadhyay, Performance evaluation of a new novel planar interdigital sensors.
    [73] C.K. Yang, J.S. Chang, Two dimensional simulation on immunoassay for a biosensor with applying electrothermal effect, APPLIED PHYSICS LETTERS 91 (2007) 113904.
    [74] T. Simonson, C.L. Brooks, Charge Screening and the Dielectric Constant of Proteins: Insights from Molecular Dynamics, J. Am. Chem. Soc. (1996) 118, 8452-8458.
    [75] S. Uno, M. Iio, H. Ozawa, K. Nakazato, Full Three-Dimensional Simulation of Ion-Sensitive Field-Effect Transistor Flatband Voltage Shifts Due to DNA Immobilization and Hybridization, The Japan Society of Applied Physics (2010).
    [76] E.C. Sherer, S.J. Bono, Further Quantum Mechanical Evidence that Difluorotoluene Does Not Hydrogen Bond, J. Phys. Chem. B (2001) 105 8445-8451.
    [77] F.F. BECKER, X.B. WANG, Separation of human breast cancer cells from blood by differential dielectric affinity, January (1995) Vol. 92 860-864.

    QR CODE
    :::