跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳其峰
Chi-Feng Wu
論文名稱: 利用電紡絲製備含聚甲基丙烯酸甲酯之超疏水表面
Preparation of superhydrophobic PMMA surfaces by electrospinning
指導教授: 陳暉
Hui Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 73
中文關鍵詞: 蓮花效應超疏水聚甲基丙烯酸甲酯電紡絲含氟高分子有機/無機混成材料溶膠-凝膠法
外文關鍵詞: lotus effect, superhydrophobic, poly(methyl methacrylate), electrospinning, fluorinated-copolymer, hybrid, sol-gel
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要是利用電紡絲製備含聚甲基丙烯酸甲酯的超疏水表面。要形成超疏水表面有兩個要件:一、微奈米級粗糙表面;二、低表面能物質。而使用電紡絲製程可製造出微米、奈米級直徑纖維或小球,形成本實驗所需要的粗糙表面,形成接觸角大於150°的超疏水表面為本研究最終目標。
      實驗部份首先研究聚甲基丙烯酸甲酯於不同濃度下,經電紡絲所形成的粗糙表面形態與水滴在其表面的接觸角。研究結果顯示,在低濃度時纖維無法連續而斷裂成小球狀,此時的接觸角最大,可達146.2°。
      第二部份利用含氟高分子溶液,欲降低其表面能來提高接觸角,結果接觸角最高至150.5°。考量經濟效益下,需降低含氟高分子的使用量,而與高分子量之聚甲基丙烯酸甲酯溶液混合,最終測得最高接觸角143.6°。
    第三部份,以溶膠-凝膠法來製備有機/無機混成電紡絲表面,順利獲得接觸角157.0°之超疏水表面。
    最後,為改善奈微米球在基材表面的不穩定現象,使用沸點高達153 ℃的二甲基甲醯胺混合丁酮為溶劑,因二甲基甲醯胺揮發速度較慢,在低濃度時形成互相連結的奈米纖維或團聚黏合的高分子小球,使其擁有穩固的結構。


    The target of this research was preparation of superhydrophobic poly(methyl methacrylate) (PMMA) surface by electrospinning. There are two key points to achieve superhydrophobic surface: (1) low surface energy material, and (2) micro-/nano-meter rough structure. Micro-/nano-fibers or beads could be manufactured via electrospinning process in order to form rough structures we needed. Further, low energy materials were introduced into electrospun surfaces for obtaining superhydrophobic surfaces.
    First of all, researching morphologies and water contact angles of electrospun PMMA surfaces were on the different molecular weight and polymer concentration. The electrospun PMMA with low concentration was unable to keep fiber shape but turn into beads resulted in performing the highest water contact angle 146.2° on the surface.
    In order to decrease surface energy, water-repellent materials were prepared by utilizing TA-N fluoroalkylate (TAN) and methyl methacrylate (MMA) copolymer. The superhydrophobic property of the electrospun poly(TAN-MMA) surfaces were arrived, and the contact angle was 150.5°. In the other hand, poly(TAN-MMA) mixed with high molecular weight PMMA for decreasing amounts of expensive fluoride polymer. This economical method showed almost superhydrophobic (143.6°).
    Second way to decrease surface energy was utilization of sol-gel method to form organic/inorganic hybrid surface. The contact angle of the electrospun hybrid surface was 157.0°.
    Finally, choosing high boiling point matter, DMF, as solvent attemped to improve stability of surfaces. Because DMF evaporated slowly, the electrospun surfaces presented stable structures of connected nanofibers or bead mats.

    摘要......I Abstract......II 目錄......IV 表索引......VI 流程圖索引......VII 圖索引......VIII 第一章 前言......1 1-1 超疏水起源及原理......1 1-2 表面粗糙度製備方式-電紡絲(electrospinning)......2 1-2-1 電紡絲技術之原理與發展......2 1-2-2 利用電紡絲製備超疏水表面之文獻回顧......4 1-3 研究目的......8 第二章 實驗......9 2-1 藥品......9 2-2 實驗儀器......11 2-3 電紡絲裝置操作參數......11 2-4 疏水性表面之製備......12 2-4-1 高分子溶液經由電紡絲製備疏水表面......12 2-4-2 含氟高分子溶液經由電紡絲製備超疏水表面......12 2-4-3 前置液之製備......15 2-4-4 有機/無機混成電紡絲超疏水表面之製備......15 2-5 超疏水表面之物性測量......18 2-5-1 以接觸角量測儀測量接觸角......18 2-5-2 以SEM觀察表面微結構......18 2-5-3 以GPC測量分子量......18 第三章 結果與討論......19 3-1 高分子溶液經由電紡絲製備疏水表面......19 3-1-1 PMMA溶液於不同濃度下之表面形態與接觸角......19 3-1-2 分子量對纖維表面之影響......21 3-2 利用含氟高分子經由電紡絲製備超疏水表面......28 3-2-1 TM的合成......28 3-2-2 不同高分子濃度下電紡絲表面形態與接觸角......29 3-2-3 混摻TM-30L與M-H......30 3-3 利用溶膠-凝膠法製備有機/無機混成電紡絲超疏水表面......42 3-3-1 PMMA與前置物混合比例對接觸角之影響......42 3-3-2 溶膠-凝膠法中改變加入鹽酸量對接觸角之影響......45 3-4 溶劑對PMMA電紡絲表面的影響......47 第四章 結論......55 參考文獻......56

    1. Barthlott, W. and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta. 202(1), p. 1-8, 1997.
    2. Gu, G., H. Dang, Z. Zhang, and Z. Wu, Fabrication and characterization of transparent superhydrophobic thin films based on silica nanoparticles. Applied Physics a-Materials Science & Processing. 83(1), p. 131-132, 2006.
    3. Rao, A.V., M.M. Kulkarni, D.P. Amalnerkar, and T. Seth, Superhydrophobic silica aerogels based on methyltrimethoxysilane precursor. Journal of Non-Crystalline Solids. 330(1-3), p. 187-195, 2003.
    4. Shang, H.M., Y. Wang, K. Takahashi, G.Z. Cao, D. Li, and Y.N. Xia, Nanostructured superhydrophobic surfaces. Journal of Materials Science. 40(13), p. 3587-3591, 2005.
    5. Shang, H.M., Y. Wang, S.J. Limmer, T.P. Chou, K. Takahashi, and G.Z. Cao, Optically transparent superhydrophobic silica-based films. Thin Solid Films. 472(1-2), p. 37-43, 2005.
    6. Shirtcliffe, N.J., G. McHale, M.I. Newton, and C.C. Perry, Intrinsically superhydrophobic organosilica sol-gel foams. Langmuir. 19(14), p. 5626-5631, 2003.
    7. Song, X., J. Zhai, Y. Wang, and L. Jiang, Fabrication of Superhydrophobic Surfaces by Self-Assembly and Their Water-Adhesion Properties. Journal of Physical Chemisry B. 109(9), p. 4048-4052, 2005.
    8. 李坤穆, 溶膠-凝膠法製備超疏水性薄膜材料. 國立中央大學,碩士論文,民國93年.
    9. Nakajima, A., K. Abe, K. Hashimoto, and T. Watanabe, Preparation of hard super-hydrophobic films with visible light transmission. Thin Solid Films. 376(1-2), p. 140-143, 2000.
    10. Miwa, M., A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe, Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir. 16(13), p. 5754-5760, 2000.
    11. Nakajima, A., K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi, and A. Fujishima, Transparent superhydrophobic thin films with self-cleaning properties. Langmuir. 16(17), p. 7044-7047, 2000.
    12. Tadanaga, K., J. Morinaga, and T. Minami, Formation of superhydrophobic-superhydrophilic pattern on flowerlike alumina thin film by the sol-gel method. Journal of Sol-Gel Science and Technology. 19(1-3), p. 211-214, 2000.
    13. Satoh, K. and H. Nakazumi, Preparation of super-water-repellent fluorinated inorganic-organic coating films on nylon 66 by the sol-gel method using microphase separation. Journal of Sol-Gel Science and Technology. 27(3), p. 327-332, 2003.
    14. Gu, Z.Z., H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, and O. Sato, Structural color and the lotus effect. Angewandte Chemie-International Edition. 42(8), p. 894-+, 2003.
    15. Chang, K.C., Y.K. Chen, and H. Chen, Preparation and characterization of superhydrophobic silica-based surfaces by using polypropylene glycol and tetraethoxysilane precursors. Surface & Coatings Technology. 201(24), p. 9579-9586, 2007.
    16. Chang, K.C., Y.K. Chen, and H. Chen, Preparation of superhydrophobic silica-based films by using polyethylene glycol and tetraethoxysilane. Journal of Applied Polymer Science. 105(3), p. 1503-1510, 2007.
    17. Chang, K.C., H. Chen, C.K. Huang, and S.I. Huang, Preparation of super-hydrophobic film with fluorinated-copolymer. Journal of Applied Polymer Science. 104(3), p. 1646-1653, 2007.
    18. Chang, K.C., Y.K. Chen, and H. Chen, Fabrication of superhydrophobic silica-based surfaces with high transmittance by using polypropylene and tetraeyhoxysilane precursors. Journal of Applied Polymer Science. 107(3), p. 1530-1538, 2008.
    19. Chang, K.C., Y.K. Chen, and H. Chen, Fabrication of highly transparent and superhydrophobic silica-based surface by TEOS/PPG hybrid with adjustment of the pH value. Surface & Coatings Technology. 202(16), p. 3822-3831, 2008.
    20. Lau, K.K.S., J. Bico, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G.H. McKinley, and K.K. Gleason, Superhydrophobic carbon nanotube forests. Nano Letters. 3(12), p. 1701-1705, 2003.
    21. Favia, P., G. Cicala, A. Milella, F. Palumbo, R. Rossini, and R. d''Agostino, Deposition of super-hydrophobic fluorocarbon coatings in modulated RF glow discharges. Surface & Coatings Technology. 169, p. 609-612, 2003.
    22. Teshima, K., H. Sugimura, Y. Inoue, O. Takai, and A. Takano, Ultra-water-repellent poly(ethylene terephthalate) substrates. Langmuir. 19(25), p. 10624-10627, 2003.
    23. Huang, Z.M., Y.Z. Zhang, M. Kotaki, and S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology. 63(15), p. 2223-2253, 2003.
    24. Formhals, A., Method and apparatus for spinnin. 1944.
    25. Formhals, A., Production of artificial fibers from fiber forming liquids. 1943.
    26. Formhals, A., Artificial thread and method of producing same. 1940.
    27. Formhals, A., Method and apparatus for spinning. 1939.
    28. Formhals, A., Process and apparatus for preparing artificial threads. 1934.
    29. Simons, H.L., Process and apparatus for producing patterned non-woven fabrics. 1966.
    30. Baumgarten, P.K., Electrostatic spinning of acrylic microfibers Journal of Colloid and Interface Science. 36(1), p. 71-79, 1971.
    31. Jiang, L., Y. Zhao, and J. Zhai, A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angewandte Chemie-International Edition. 43(33), p. 4338-4341, 2004.
    32. Acatay, K., E. Simsek, C. Ow-Yang, and Y.Z. Menceloglu, Tunable, superhydrophobically stable polymeric surfaces by electrospinning. Angewandte Chemie-International Edition. 43(39), p. 5210-5213, 2004.
    33. Ma, M.L., Y. Mao, M. Gupta, K.K. Gleason, and G.C. Rutledge, Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules. 38(23), p. 9742-9748, 2005.
    34. Ma, M.L., R.M. Hill, J.L. Lowery, S.V. Fridrikh, and G.C. Rutledge, Electrospun poly(styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity. Langmuir. 21(12), p. 5549-5554, 2005.
    35. Singh, A., L. Steely, and H.R. Allcock, Poly[bis(2,2,2-trifluoroethoxy)phosphazene] superhydrophobic nanofibers. Langmuir. 21(25), p. 11604-11607, 2005.
    36. Ying, Z., C.Z. Jing, Z. Jin, M.Z. Yong, F. Lin, and J. Lei, Multifunctional carbon nanofibers with conductive, magnetic and superhydrophobic properties. Chemphyschem. 7(2), p. 336-341, 2006.
    37. Zhu, Y., J.C. Zhang, Y.M. Zheng, Z.B. Huang, L. Feng, and L. Jiang, Stable, superhydrophobic, and conductive polyaniline/polystyrene films for corrosive enviromnents. Advanced Functional Materials. 16(4), p. 568-574, 2006.
    38. Zhu, M.F., W.W. Zuo, H. Yu, W. Yang, and Y.M. Chen, Superhydrophobic surface directly created by electrospinning based on hydrophilic material. Journal of Materials Science. 41(12), p. 3793-3797, 2006.
    39. Miyauchi, Y., B. Ding, and S. Shiratori, Fabrication of a silver-ragwort-leaf-like super-hydrophobic micro/nanoporous fibrous mat surface by electrospinning. Nanotechnology. 17(20), p. 5151-5156, 2006.
    40. Lim, J.M., G.R. Yi, J.H. Moon, C.J. Heo, and S.M. Yang, Superhydrophobic films of electrospun fibers with multiple-scale surface morphology. Langmuir. 23(15), p. 7981-7989, 2007.
    41. Ma, M.L., M. Gupta, Z. Li, L. Zhai, K.K. Gleason, R.E. Cohen, M.F. Rubner, and G.C. Rutledge, Decorated electrospun fibers exhibiting superhydrophobicity. Advanced Materials. 19(2), p. 255-+, 2007.
    42. Zhu, Y., L. Feng, F. Xia, J. Zhai, M.X. Wan, and L. Jiang, Chemical dual-responsive wettability of superhydrophobic PANI-PAN coaxial nanofibers. Macromolecular Rapid Communications. 28(10), p. 1135-1141, 2007.
    43. Wang, H.X., J. Fang, T. Cheng, J. Ding, L.T. Qu, L.M. Dai, X.G. Wang, and T. Lin, One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity. Chemical Communications,(7), p. 877-879, 2008.
    44. Il Yoon, Y., H.S. Moon, W.S. Lyoo, T.S. Lee, and W.H. Park, Superhydrophobicity of PHBV fibrous surface with bead-on-string structure. Journal of Colloid and Interface Science. 320(1), p. 91-95, 2008.
    45. Lu, X.B., J.H. Zhou, Y.H. Zhao, Y. Qiu, and J.H. Li, Room temperature ionic liquid based polystyrene nanofibers with superhydrophobicity and conductivity produced by electrospinning. Chemistry of Materials. 20(10), p. 3420-3424, 2008.
    46. Choi, D.I., E.H. Yeom, M. Park, J.K. Kim, and B.C. Kim, Preparation and properties of methyl methacrylate and fluoroacrylate copolymers for plastic optical fiber cladding. Journal of Applied Polymer Science. 93(5), p. 2082-2089, 2004.
    47. 邹迪婧, 赵红, 齐民, and 杨大智, 溶剂对静电纺丝聚氨酯纤维仿生涂层的影响. 功能材料. 7(38), 2007.
    48. Tungprapa, S., T. Puangparn, M. Weerasombut, I. Jangchud, P. Fakum, S. Semongkhol, C. Meechaisue, and P. Supaphol, Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose. 14(6), p. 563-575, 2007.
    49. 王海燕, 刘新厚, and 吴大勇, 静电纺丝及纳米纤维薄膜. Acta Physico-Chimica Sinica, p. 67-74, 2007.

    QR CODE
    :::