| 研究生: |
莊仕安 Shi-An Zhuang |
|---|---|
| 論文名稱: |
以氧化鋅奈米柱陣列形成的表面增益拉曼散射效應 The surface enhanced Raman scattering achieved by ZnO nanorod arrays |
| 指導教授: |
賴昆佑
Kun-Yu Lai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 表面增益拉曼散射 、氧化鋅 、奈米柱 、金奈米顆粒 、增益因數 |
| 外文關鍵詞: | SERS, ZnO, nanorod, Au nanoparticle, enhancement factor |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究嘗試結合氧化鋅(ZnO)奈米柱與金屬奈米粒子,探討此種複合結構對表面增益拉曼散射(surface enhanced Raman scattering, SERS)的影響。ZnO有兩種結構,六方纖鋅礦結構和立方閃鋅礦結構。這兩種晶體結構具有對稱性,因此具有壓電效應的特性,在應用上可發展為表面聲波元件、氣體偵測器等等。為了製作出具有SERS-active的基板,我們使用水熱合成法,在低溫的環境下,在矽基板上合成大面積且分布均勻的ZnO奈米柱。為了引發侷域表面電漿效應,我們在奈米柱上蒸鍍金屬,並利用快速退火的方式,把金屬薄膜形變為金屬奈米顆粒。金屬奈米顆粒形成的侷域表面電漿共振效應,會讓金屬奈米顆粒之間出現「熱點」,也就是拉曼訊號被極度放大的區域,這個放大訊號的機制,可用來偵測表面分子的濃度。
我們嘗試不同厚度的金屬薄膜: 10、20、30、40、50 nm,探討金屬厚度對表面增益拉曼效應的影響。找到效果最佳的厚度後,我們再以不同退火溫度: 300、400、500 ℃,探討退火溫度對表面增益拉曼效應的影響。
為了評估奈米結構的靈敏度,也就是可偵測的最低濃度,我們調製不同濃度的R6G(rhodamine 6G)螢光分子,並量測相對應的拉曼強度。量測結果顯示,這種奈米結構的SERS基板可測到濃度低達10-9 M的R6G分子,而無ZnO奈米結構的SERS,只能測到濃度在10-3M以上的R6G。增益因數為1.5×104,此結果證實ZnO奈米柱和金屬奈米粒子的結合,能提升拉曼訊號的強度。
This study investigated the effect of ZnO nanorods decorated with metallic nanoparticles on surface enhanced Raman scattering(SERS). ZnO has two crystalline structures, i.e. the hexagonal wurtzite structure and the cubic sphalerite structure. These two structures are of symmetric lattices and thus exhibit piezoelectric characteristics, be useful in the applications on surface acoustic wave devices, gas detectors, etc. In order to produce a SERS-active substrate, we employ a low-temperature hydrothermal method to synthesize large-area and uniform ZnO nanorods on silicon substrates . To attain the localized surface plasma resonance (LSPR) effect, we deposit a thin metal film on the nanorods, and use an annealing process to produce metal nanoparticles. The LSPR effect leads to the "hot spots" between adjacent metal nanoparticles, rendering greatly amplified Raman scattering intensities. The amplified SERS intensities can be used to determine the concentrations of fluorescent molecules.
Different metal thicknesses (10, 20, 30, 40, and 50nm) on the ZnO-nanorod SERS substrate were firstly investigated to maximized the Raman scattering intensity. And then the effect of annealing temperature was studied with the optimized metal thickness.
In order to evaluate the lowest detectable molecule concentration, we prepared the R6G (rhodamine 6G) solutions with different concentrations. The lowest detectable concentration was found to be 10-9 M, whereas the flat substrate gave the lowest detectable concentration of 10-3 M. Enhancement factor is 1.5×104. The result confirms that the ZnO-nanorod SERS substrate is effective in enhancing the Raman scattering intensity of fluorescent molecules.
1 李明義. 醫療自動化與復健工程, <http://mmrl.cgu.edu.tw/data/mme/rehab/organize/chap2/sensor/no2.htm> (1998).
2 Strutt, J. W. XV. On the light from the sky, its polarization and colour. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 41, 107-120 (1871).
3 Strutt, J. XXXVI. On the light from the sky, its polarization and colour. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 41, 274-279 (1871).
4 Raman, C. V. & Krishnan, K. S. A new type of secondary radiation. Nature 121, 501-502 (1928).
5 Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 26, 163-166 (1974).
6 Jeanmaire, D. L. & Van Duyne, R. P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 84, 1-20 (1977).
7 Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Physical review letters 78, 1667 (1997).
8 Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. science 275, 1102-1106 (1997).
9 Aroca, R. Surface-enhanced vibrational spectroscopy. (John Wiley & Sons, 2006).
10 Le Ru, E. & Etchegoin, P. Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects. (Elsevier, 2008).
11 Anker, J. N. et al. in Nanoscience And Technology: A Collection of Reviews from Nature Journals 308-319 (World Scientific, 2010).
12 Moskovits, M. Surface‐enhanced Raman spectroscopy: a brief retrospective. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering 36, 485-496 (2005).
13 Galopin, E. et al. Silicon nanowires coated with silver nanostructures as ultrasensitive interfaces for surface-enhanced Raman spectroscopy. ACS applied materials & interfaces 1, 1396-1403 (2009).
14 Becker, M. et al. Nanowires enabling signal‐enhanced nanoscale raman spectroscopy. Small 4, 398-404 (2008).
15 Ru, E. C. L. & Etchegoin, P. G. Phenomenological local field enhancement factor distributions around electromagnetic hot spots. The Journal of Chemical Physics 130, 181101, doi:10.1063/1.3138784 (2009).
16 Aldeanueva-Potel, P., Faoucher, E., Alvarez-Puebla, R. n. A., Liz-Marzán, L. M. & Brust, M. Recyclable molecular trapping and SERS detection in silver-loaded agarose gels with dynamic hot spots. Analytical chemistry 81, 9233-9238 (2009).
17 Li, X., Chen, G., Yang, L., Jin, Z. & Liu, J. Multifunctional Au‐coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Advanced Functional Materials 20, 2815-2824 (2010).
18 Choi, J.-Y., Kim, K. & Shin, K. S. Surface-enhanced Raman scattering inducible by recyclable Ag-coated magnetic particles. Vibrational Spectroscopy 53, 117-120 (2010).
19 Mahurin, S. M., John, J., Sepaniak, M. J. & Dai, S. A reusable surface-enhanced Raman scattering (SERS) substrate prepared by atomic layer deposition of alumina on a multi-layer gold and silver film. Applied spectroscopy 65, 417-422 (2011).
20 Wood, R. W. XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 4, 396-402 (1902).
21 Fano, U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). JOSA 31, 213-222 (1941).
22 Ritchie, R. H. Plasma losses by fast electrons in thin films. Physical review 106, 874 (1957).
23 Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei 216, 398-410 (1968).
24 Kretschmann, E. & Raether, H. Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A 23, 2135-2136 (1968).
25 Andr´e Edelmann, S. F. H. a. J. J. Excitation of surface plasmon polaritons using prism coupling, <https://www.fernunihagen.de/MNP/forschung/Jahresbericht2011/JB_AE_2.pdf> (2010).
26 Foley Iv, J. J. et al. When are Surface Plasmon Polaritons Excited in the Kretschmann-Raether Configuration? Scientific Reports 5, 9929, doi:10.1038/srep09929
https://www.nature.com/articles/srep09929#supplementary-information (2015).
27 邱國斌 & 蔡定平. 金屬表面電漿簡介. 物理雙月刊 28, 472-485 (2006).
28 Mock, J., Barbic, M., Smith, D., Schultz, D. & Schultz, S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. The Journal of Chemical Physics 116, 6755-6759 (2002).
29 Sinha, G., Depero, L. E. & Alessandri, I. Recyclable SERS substrates based on Au-coated ZnO nanorods. ACS applied materials & interfaces 3, 2557-2563 (2011).
30 Khan, M. A., Hogan, T. P. & Shanker, B. Gold‐coated zinc oxide nanowire‐based substrate for surface‐enhanced Raman spectroscopy. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering 40, 1539-1545 (2009).
31 Chen, L. et al. ZnO/Au composite nanoarrays as substrates for surface-enhanced Raman scattering detection. The Journal of Physical Chemistry C 114, 93-100 (2009).
32 Cheng, C. et al. Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays. ACS applied materials & interfaces 2, 1824-1828 (2010).
33 Wang, Y. et al. Direct observation of surface‐enhanced Raman scattering in ZnO nanocrystals. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering 40, 1072-1077 (2009).
34 Qi, H., Alexson, D., Glembocki, O. & Prokes, S. The effect of size and size distribution on the oxidation kinetics and plasmonics of nanoscale Ag particles. Nanotechnology 21, 215706 (2010).
35 Yang, L. et al. Contribution of ZnO to charge-transfer induced surface-enhanced Raman scattering in Au/ZnO/PATP assembly. The Journal of Physical Chemistry C 113, 117-120 (2008).
36 mattopia. sputtering process, <https://en.wikipedia.org/wiki/Sputter_deposition#/media/File:Sputtering2.gif> (2005).
37 Chen, S.-W. & Wu, J.-M. Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method. Acta Materialia 59, 841-847 (2011).
38 陳建嘉. Nanoheteroepitaxial growth of GaN on Si substrates master thesis, National Central University, (2013).
39 Li, N. GaN on ZnO: a new approach to solid state lighting, Georgia Institute of Technology, (2009).
40 Solís-Pomar, F., Martínez, E., Meléndrez, M. F. & Pérez-Tijerina, E. Growth of vertically aligned ZnO nanorods using textured ZnO films. Nanoscale research letters 6, 524 (2011).
41 Zhang, Z., Si, T., Liu, J., Han, K. & Zhou, G. Controllable synthesis of AgNWs@ PDA@ AgNPs core–shell nanocobs based on a mussel-inspired polydopamine for highly sensitive SERS detection. RSC Advances 8, 27349-27358 (2018).