| 研究生: |
沈柏丞 Bow-Cheng Shen |
|---|---|
| 論文名稱: |
液滴於具溫度梯度的微流道之數值模擬 Computational study of a droplet migration in a microchannel with temperature gradients |
| 指導教授: |
陳志臣
Jyh-Chen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 熱毛細力 、微流道 、液滴 |
| 外文關鍵詞: | microchannel, thermocapillary force, droplet |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於液滴在許多領域的應用廣泛,需要研究其原理以了解其中物理機制。本研究使用數值模擬,探討液滴在微流道內因溫度梯度所形成液滴與空氣介面的表面張力梯度,而使液滴移動之物理機制,運用等為函數法(Level set Method),ALE運動描述法(Arbitrary Lagrangian Eulerian method, ALE method)以及連續表面力學法,利用有限元素法求解Navier-Stoke方程式與能量方程式。
本研究模擬液滴在微流道中移動時,表面張力(surface tension)受到溫度梯度作用而產生變化,液滴內部會產生兩個不對稱的熱毛細(thermocapillary)渦旋,液滴在較熱端的熱毛細渦漩大於較冷端的熱毛細渦漩,因此淨動量會將液滴由熱邊往冷邊推動。當液滴上板邊界條件為室溫時,液滴內部兩個渦漩尺寸會液滴移動而達到平衡,當上板邊界條件為絕熱時,由於液滴內部溫度分布類似於底板溫度分布,因此只會造成一個渦旋,這也使其熱毛細動量降低造成遷移速度較慢,而真實情況應介在兩者之間。上板邊界離液滴的距離越近,則對液滴的影響越大,上板邊界條件為室溫時,液滴的近穩定速度越快,而上板邊界條件為絕熱時,起始速度會變快,但近穩定速度沒有太大差距。溫度梯度越大所造成的液滴近穩態速度增加,也會使其近穩態的前進接觸角與後退接觸角的差值變大。而在不同起始靜接觸角的情況下,由於須保持質量守恆,所以會造成起始靜接觸角較小(大)的液滴,其足跡半徑較大(小),所受到的熱毛細力較大(小),而靜態接觸角小(大)於90˚的液滴,其毛細力方向相反(相同)於液滴移動方向,但馬蘭哥尼數(Marangoni number, Ma)較大的液滴移動速度較快,可以知道熱毛細力主導液滴移動機制。
The migration of a liquid droplet in a microchannel has widespread attention from many researchers. In this dissertation, a proper computational model is developed for investigating the transient migration of a liquid droplet in a microchannel. Numerical calculations are carried out by solving the Navier-Stokes equations coupled with the energy equation through the finite element method (FEM). The conservative level set method, the arbitrary Lagrangian-Eulerian (ALE) method, and the continuum surface force (CSF) method are employed to treat the movement and deformation of the droplet/air interface and the surface tension force during the motion process. The density and surface tension coefficient are dependent on temperature.
The study indicates that when a liquid droplet is of small size, two asymmetric thermocapillary vortices are generated inside the droplet. The thermocapillary vortex on the hot side is always larger in size than that appearing on the cold one. The net momentum of the thermocapillary convection inside droplet pushes the droplet moves from the larger vortex (hot side) to the smaller one (cold side). When the upper boundary condition is ambient temperature, the variation of the size of the thermocapillary vortex during the movement causes the speed of the droplet to initially increase and then decrease slowly until approaching constant value. When the upper boundary is insulation, the vortex inside the droplet becomes to one, and the speed of the droplet decrease rapidly after reaching the max value. The real phenomenon is between of ambient temperature and insulation. Microchannel of smaller height leads the upper boundary effects the migration of the droplet more. When the upper boundary condition is ambient temperature and smaller height microchannel, the stagnation point on the droplet/air interface is closer to the apex of the droplet. The temperature of the stagnation point in small height channel is lower than large channel. If the temperature difference at droplet/air interface is larger, the thermocapillary force is stronger, and the droplet migration speed is faster. When the upper boundary condition is insulation, smaller height channel leads the droplet moves faster at the beginning but also reaches a tiny quasi-steady migration. A higher imposed temperature gradient leads the droplet velocity to reach the maximal value earlier and have a higher final speed. If the static contact angle of the droplet is less (or higher) than 90 degree, the droplet speed is higher (or lower) since the net thermocapillary momentum is larger (or smaller).
[1] M.W. Losey, R.J. Jackman, S.L. Firebaugh, “Design and Fabrication of Microfluidic Devices for Multiphase Mixing and Reaction”, Journal of microelectromechanical systems, vol.11, pp.709-717, 2002.
[2] S. Haeberle and R. Zengerle, “Microfluidic platforms for lab-on-a-chip applications”, Lab chip, vol. 7, pp.1094-1110, 2007.
[3] T.S. Sammarco and M.A. Burns, “ Heat-transfer analysis of microfabricated thermocapillary pumping and reaction devices”, Journal of micromechanics and microengineering, vol.10, pp.42-55, 1999.
[4] F. Brochard, “Motions of droplets on solid surfaces induced by chemical or thermal gradients”, Langmuir, vol.5, pp.432-438, 1989.
[5] C.G. Cooney, C.-Y. Chen, M.R. Emerling, A. Nadim and J.D. Sterling, “Electrowetting droplet microfkuidics on a single planar surface”, Microfluid Nanofluid, vol.2, pp.435-446, 2005.
[6] N. Kumari, V. Bahadur and S.V. Garimella, “Electrical actuation of dielectric droplets”, Journal of micromechanics and microengineering, vol.18, pp.1-9, 2008.
[7] K. Ichimura, S.K. Oh and M. Nakagawa, “Light-driven motion of liquids on a photoresponsive surface”, Science, vol.288, pp.1324-1626, 2000.
[8] B.S. Gallardo, V.K. Gupta, F.D. Eagerton, L.I. Jong, V.S. Craig, R.R. Shah and N.L. Abbott, “Electrochemical principles for active control of liquids on submillimeter scales”, Science, vol.293, pp. 57-60, 1999.
[9] L. Gao and T.J. McCarthy, “contact angle hysteresis explained”, Langmuir, vol.22, pp.6234-6237, 2006.
[10] R.S. Subramanian and R. Balasubramaiam, “The motion of bubbles and drops in reduced gravity”, New York: Cambridge University Press, 2001.
[11] D.T. Wasan, A.D. Nikolov, and H. Brenner, “Droplets speeding on surfaces”, Science, vol.291, pp.605-606, 2001.
[12] C.-H. Choi, A. Westin, and K.S. Breuer, “Apparent slip flows in hydrophilic and hydrophobic microchannels”, Physics of fluids, vol.15, pp.2897-2902, 2003.
[13] C.-H. Choi, U. Ulmanella, J. Kim, C.-M. Ho, and C.-J. Kim “Effective slip and friction reduction in nanograted superhydrophobic microchannel”, Physics of fluid, vol.18, 2006.
[14] J. Baudry, E. Charlaix, A. Tonck, and D. Mazuyer, “Experimental Evidence for a Large Slip Effect at a Nonwetting Fluid−Solid Interface”, Langmuir, vol.17, pp.5232-5236, 2001.
[15] J.T. Cheng and N. Glordano, “Fluid flow through nanometer-scale channels”, Physical review E, vol.65, pp.1-5, 2002.
[16] N.K. Ahmed and M. Hecht “A boundary condition with adjustable slip length for lattice Boltzmann simulations”, Journal of statistical mechanics: theory and experiment, vol.9, pp.09017, 2009.
[17] S.K. Kannam, B.D. Todd, J.S. Hansen, and P.J. Daivis, “Slip length of water on graphene: Limitations of non-equilibrium molecular dynamics simulations”, The journal of chemical physics, vol.136, pp.024705-1-9, 2012.
[18] D.L. Morris, L.H. Alejandro L. Gacia, “Slip length in a dilute gas”, Physical review A, vol.46, pp.5279-5281, 2012.
[19] J.L. Barrat and L. Bocquet, “Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface”, Faraday discuss, vol.112, pp.119-127, 1999.
[20] M.E. O''Neill, K.B. Ranger, and H. Brenner, “Slip at the surface of a translating–rotating sphere bisected by a free surface bounding a semi-infinite viscous fluid: Removal of the contact-line singularity”, Physics of fluids, vol.29, pp.913-924, 1986.
[21] E.B. Dussan, “On the Spreading of Liquids on Solid Surfaces: Static and Dynamic Contact Lines”, Annual Review of Fluid Mechanics, vol.11, pp.371-400, 1979.
[22] X.Y. Hu and N.A. Adams, “Moving Contact Line with Balanced Stress Singularities”, Symposium on advances in micro- and nanofluidics, vol.15, pp.87-94, 2008.
[23] Z. Li, M.C. Lai, G. He and H. Zhao, “An augmented method for free boundary problems with moving contact lines”, Computers & Fluids, vol.39, pp.1033-1040, 2010.
[24] J. Liu, M.T. Nguyen and Y.F. Yap, “Numerical Studies of Sessile Droplet Shape with Moving Contact Lines”, Micro and Nanosystems, vol.3, pp.56-64, 2011.
[25] M.L. Ford and A. Nadim, “Thermocapillary migration of an attached drop on a solid surface”, Physics of fluids, vol.6, pp. 3183-3185, 1994.
[26] J.Z. Chen, S.M. Troian, A.A. Darhuber,, and S. Wagner, “Effect of contact angle hysteresis on thermocapillary droplet actuation, ” Journal of applied physics, vol.97, pp.014906-1-9, 2005.
[27] X.J. Jiao, X.Y. Huang, N.T. Nguyen and P. Abgrall, “Thermocapillary actuation of droplet in a planar microchannel”, Microfluid Nanofluid, vol.5, pp.205-214, 2008.
[28] J.B. Brzoska, F. Brochard-Wyart, and F. Rondelez, “Motions of droplets on hydrophobic model surfaces induced by thermal gradients”, Langmuir, vol.9, pp.2220-2224, 1993.
[29] V. Pratap, N. Moumen, and R. S. Subramanian, “Thermocapillary Motion of a Liquid Drop on a Horizontal Solid Surface” Langmuir, vol.24, pp.5185-5193, 2008.
[30] Y.T. Tseng, F.G. Tseng, Y.F. Chen, and C.C. Chieng, “Fundamental studies on micro-droplet movement by Marangoni and capillary effects”, Sensors & Actuators: A. Physical, vol. 114, pp. 292-301, 2004.
[31] Y. Zhao, F. Liu and C.H. Chen, “Thermocapillary actuation of binary drops on solid surfaces”, Applied Physics Letters, vol.99, pp.104101-1-3, 2011.
[32] C. Song, K. Kim, K. Lee and H. K. Pak, “Thermochemical control of oil droplet motion on a solid substrate” Applied Physics Letters, vol.93, pp.084102-1-3, 2008
[33] M.L. Cordero, D.R. Burham, C.N. Baroud and D. McGloin, “Thermocapillary manipulation of droplets using holographic beam shaping: Microfluidic pin ball”, Applied Physics Letters, vol.93, pp.034107-1-3, 2008.
[34] H.B. Nguyen and J.-C. Chen, “a numerical study of thermocapillary migration of a small liquid droplet on a horizontal solid surface”, Physics of fluids, vol.22, pp.062102-1-12, 2010.
[35] H.B. Nguyen and J.-C. Chen “Numerical study of a droplet migration induced by combined thermocapillary-buoyancy convection”, Physics of fluids, vol.22, pp.122101-1-9, 2010.
[36] H. Liu, Y. Zhang and A.J. Valocchi “Modeling and simulation of thermocapillary flows using lattice Boltzmann method”, Journal of computational physics, vol.231, pp.4433-4453, 2012.
[37] J.-C. Chen, C. W. Kuo, and G.P. Neitzel, “Numerical simulation of thermocapillary nonwetting”, International journal of heat and mass transfer, vol.49, pp.4567-4576, 2006.
[38] S.O. Unverdi and G. Tryggvason, “A front-tracking method for viscous, Incompressible, Multi-fluid Flows”, Journal of computational physics, vol.100, pp.25-37, 1992.
[39] C.W. Hirt and B.D. Nichols, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries” Journal of computational physics, vol.39, pp.201-225, 1981
[40] S. Zahedi, K. Gustavsson and G. Kreiss, “A conservative level set method for contact line dynamics”, Journal of computational physics, vol.228, pp.6361-6375, 2009.
[41] E. Olsson and G. Kreiss, “A conservative level set method for two phase flow”, Journal of computational physics, vol.210, pp.225-246, 2005.
[42] E. Olsson, G. Kreiss and S. Zahedi, “A conservative level set method for two phase flow II”, Journal of computational physics, vol.225, pp.785-807, 2007.
[43] J.U. Brackbill, D.B. Kothe and C. Zemach “a continuum surface tension method of modeling surface tension method”, Journal of computational physics, vol.100, pp.335-354, 1992.
[44] F. Duarte, R. Gormaz, and S. Natesan, “Arbitrary Lagrangian-Eulerian method for Navier-Stokes equations with moving boundaries”, vol.193, pp.4819-4836, 2004.
[45] T. Uchiyama, “ALE finite element method for gas-liquid two-phase flow including moving boundary based on an incompressible two-fluid model”, Nuclear engineering and design, vol.205, pp.69-82, 2001.