| 研究生: |
郭家誠 Jia-Cheng Kuo |
|---|---|
| 論文名稱: |
超音波輔助微電化學鑽孔鎳基合金加工研究 An Investigation of Ultrasonic-Assisted Micro Electrochemical Drilling of Nickel-Based Alloy |
| 指導教授: |
崔海平
Hai-Ping Tsui |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 微電化學鑽孔 、超音波輔助 、鎳基合金Inconel 718 、雜散電流腐蝕區 |
| 外文關鍵詞: | Micro Electrochemical Drilling, Ultrasonic Assisted, Inconel 718, Current Corrosion Zone |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是採用超音波輔助微電化學鑽孔鎳基合金Inconel 718,進行一系列加工特性之研究,希望獲得較佳加工能力與較小擴孔量。本研究採用於微電化學鑽孔時,藉由超音波振動刀具電極之方式進行,探討各種加工參數如工作電壓、進給速率、超音波振幅段數以及脈衝休止時間等對於鎳基合金Inconel 718之各種加工特性影響,加工特性包含出口孔徑、雜散電流腐蝕區直徑及孔錐度。
實驗結果顯示,採用超音波振動輔助微電化學鑽孔加工時,超音波振動會促使附著在刀具電極周圍的氣泡快速脫離刀具電極表面,且刀具電極的振動,會使在加工間隙中的電解液受到擠壓作用,上述二種行為造成電解液擾動,可促使陽極溶解物與廢熱有效離開電化學反應區,並使加工間隙中電解液能快速更新,進而提升加工能力與材料移除率,而根據參數實驗結果顯示,利用超音波輔助微電化學鑽孔鎳基合金Inconel 718時,除了可提升微電化學鑽孔加工能力外,有超音波輔助加工後之出口孔徑能減少11%、雜散電流腐蝕區直徑則能減少27%,改善了出口孔徑擴大量及雜散電流腐蝕現象。
This research proposes micro electrochemical drilling of nickel-based alloy Inconel 718 by ultrasonic vibration assisted. The experiment was performed to realized the machining capability and the hole expansion. The processing parameters include working voltage, feed rate, amplitude level of ultrasonic vibration and pulse off-time. After completing the experiments, the quality characteristics such as the outlet diameter of the holes, the diameter of the stray current corrosion zones and the taper of the holes were also analyzed.
When micro electrochemical drilling with ultrasonic vibration assisted was performed, the bubbles on the tool electrode will be vibrated away from the tool surface rapidly and squeeze the reaction products such as sludge and Joule heat out of the machining zone, facilitating the renewal of the electrolyte. Cavitation is also generated due to ultrasonic vibration and produces the bubbles which can agitate the electrolyte and renew the electrolyte.
The experimental results reveal that micro electrochemical drilling with ultrasonic vibration assisted can improve the machining capability and the material removal rate. The outlet diameter of the hole is reduced by 11%. The diameter of the stray current corrosion zone is reduced by 27%. The hole expansion and stray current corrosion are improved.
[1] Irfan Ucun, KubilayAslantas, FevziBedir, “An experimental investigation of the effect of coating material on tool wear in micro milling of Inconel 718 super alloy”, Wear 300,pp.8–19,2013.
[2] J. F. Wilson, Practice ,Theory,” Electrochemical Machining”, Wiley-interscience, pp.4-7, 1971.
[3] B. Bhattacharyya, M. Malapati, J. Munda, “Experimental study on electrochemical micromachining”, Journal of Materials Processing Technology, pp.485-492, 2005.
[4] 朱樹敏,電化學加工技術,化學工業出版社,2006。
[5] 胡錦芳,同軸噴吸法於微電解加工之研究,國立雲林科技大學機械工程系,碩士論文,2007
[6] R. Schuster, V. Kirchner, P. Allongue, G. Ertl, “Electrochemical micromachining”, Science, pp.98-101, 2000.
[7] B. H. Kim, S. H. Ryu, D. K. Choi, C. N. Chu, “Micro electrochemical milling”, J. Micromech. Microeng, pp.124–129, 2005.
[8] J. C. Hung, B. H. Yan, H. S. Liu, H. M. Chow, “Micro-hole machining using micro-EDM combined with electropolishing”, J. Micromech Microeng, pp.1480–1486, 2006.
[9] K. P. Rajurkar, G. Levy, A. Malshe, M. M. Sundaram, J. McGeough, X. Hu1, R. Resnick, A. DeSilva, “Micro and Nano Machining by Electro- Physical and Chemical Processes”, Annals of the CIRP, pp.643-666, 2006.
[10] J. Kozak, K. P. Rajurkar, Y. Makkar, “Selected problems of micro-electrochemical machining”, Journal of Materials Processing Technology, pp426-431, 2004.
[11] S.H. Ahn, S.H. Ryu, D.K. Choi, C.N. Chu, “Electrochemical micro drilling using ultra short pulses”, Precision Engineering, pp.129-134, 2004.
[12] Hattori, “Electrochemical machining under orbital motion conditions”, Journal of Materials Processing Technology, pp.339-346, 2001.
[13] 崔海平,電化學結合電泳精密拋光不銹鋼基材加工研究,國立中央大學機械工程系,博士論文,2008。
[14] 尤俊欽,結合電化學與電泳沉積之微孔複合加工研究,國立中央大學機械工程系,碩士論文,2008。
[15] 楊曜光,磁場輔助微電化學銑削加工特性之研究,國立中央大學機械工程系,碩士論文,2009。
[16] H. P. Tsui, J. C. Hung, J. C. You, B. H. Yan, “Improvement of Electrochemical micro drilling accuracy using helical tool”, International Journal of Machine & Manufacture processes, pp.499-505, 2008.
[17] S.Skoczypiec, “Research on ultrasonically assisted electrochemical machining process”, International Journal of Advanced Manufacturing Technology, pp.565–574, 2011.
[18] B. Ghoshal, B.Bhattacharyya, “Influence of vibration on micro-tool fabrication by electrochemical machining”, International Journal of Machine Tools & Manufacture, pp.49–59, 2013.
[19] M. Wang, Y. Zhang, Z. He, W. Peng, “Deep micro-hole fabrication in EMM on stainless steel using disk micro-tool assisted by ultrasonic vibration” , Journal of Materials Processing Technology, pp.475–483, 2016.
[20] W. Natsu1, H. Nakayama1, and Z. Yu, “Improvement of ECM Characteristics by Applying Ultrasonic Vibration” , International fournal of precision engineering and manufacturing, pp. 1131-1136, 2012.
[21] B. Bhattacharyya, J. Munda, “Experimental investigation on the influence of electrochemical machining parameters on machining rate and accuracy in micromachining domain”, International Journal of Machine Tools & Manufacture, pp.1301-1310, 2003.
[22] B. Bhattacharyya, J. Munda, M. Malapati, “Advancement in electrochemical micro-machining”, International Journal of Machine Tools & Manufacture, pp.1577-1589, 2004.
[23] M. Sen, H.S. Shan, “A review of electrochemical macro- to micro-hole drilling processes”, International Journal of Machine Tools & Manufacture, pp.137-152, 2005.
[24] X. Lu, Y. Leng, “Electrochemical micromachining of titanium surfaces for biomedical applications”, Journal of Materials Processing Technology, pp.173-178, 2005.
[25] T. Kurita, K. Chikamori, S. Kubota, M. Hattori, “A study of three-dimensional shape machining with an ECMM system”, International Journal of Machine Tools & Manufacture, pp.1311-1318, 2006.
[26] B. J. Park, B. H. Kim, C. N. Chu, “The Effect of Tool Electrode Size on Characteristics of Micro Electrochemical Machining”, CIRP Annals - Manufacturing Technology, pp.197-200, 2006.
[27] B. Bhattacharyya, M. Malapati, J. Munda, A. Sarkar, “Influence of tool vibration on machining performance in electrochemical micro-machining of copper”, International Journal of Machine Tools & Manufacture, pp.335-342, 2007
[28] J. Munda, M. Malapati, B. Bhattacharyya, “Control of micro-spark and stray-current effect during EMM process”, Journal of Materials Processing Technology, pp.151-158, 2007.
[29] W. Natsu, T. Ikeda, M. Kunieda, “Generating complicated surface with electrolyte jet machining”, Precision Engineering, pp.33-39, 2007.
[30] L. Staemmler, K. Hofmann, H. Kuck, “Hybrid tooling by a combination of high speed cutting and electrochemical milling with ultrashort voltage pulses”, Microsyst Technol, pp.249-254, 2008.
[31] S. Pa, “Super finishing with ultrasonic and magnetic assistance in electrochemical micro-machining”, Electrochimica Acta, pp.6022–6027, 2009.
[32] Insoon Yang, Min Soo Park, Chong Nam Chu, “Micro ECM with ultrasonic vibrations using a semi-cylindrical tool”, International Journal of Precision Engineering and Manufacturing, pp.5-10, 2009.
[33] S. Ali, S. Hinduja, J. Atkinson, M. Pandya, “Shaped tube electrochemical drilling of good quality holes”, CIRP Annals - Manufacturing Technology, pp.185-188, 2009.
[34] Joseph J. Maurer, Jonathan J. Mallett, John L. Hudson, et al., “Electrochemical micromachining of Hastelloy B-2 with ultrashort voltage pulses”, Electrochimica Acta, pp.952-958, 2010.
[35] Z.W. Fan, L.W. Hourng, “Electrochemical micro-drilling of deep holes by rotational cathode tools”. Int. J. Adv. Manuf. Technol, pp. 555–563,2011
[36] Z.W. Fan, L.W. Hourng, M.Y. Lin, “Experimental investigation on the influence of electrochemical micro-drilling by short pulsed voltage” Int. J. Adv. Manuf. Technol, pp.957–966, 2012.
[37] J. Wang, W. Chen, F. Gao1, F. Han1, “Ultrasonically assisted electrochemical micro drilling with sidewall-insulated electrode” Institution of Mechanical Engineers , pp.466–474, 2016.
[38] H. Goel and P. M. Pandey, “Performance evaluation of different variants of jet electrochemical micro-drilling process”, Institution of Mechanical Engineers, Institution of Mechanical Engineers, pp.1–14, 2016.
[39] K. Egashira, A. Hayashi, Y. Hirai, K. Yamaguchi, M. Ota, “Drilling of microholes using electrochemical machining”, Precision Engineering, pp.338-343, 2018.
[40] Lilong, Ma Baoji, P. Cheng1, K. Yun1 & P. Yin, “Effect of magnetic field on the electrochemical machining localization”, The International Journal of Advanced Manufacturing Technology, pp 949–956, 2019.
[41] 黃俊曄,放電與超音波振動複合加工添加 TiC 及 SiC粉末對 Al-Zn-Mg 系合金加工特性之影響,國立中央大學,碩士論文,2000。
[42] J. F. Thorpe, R. D. Zerkle, “Theoretical Analysis of the Equilibrium Sinking of Shallow, Axially Symmetric, Cavities by Electrochemical Machining”, Electrochemical Society Princeton, pp. 1-39 , 1971.
[43] 廖哲範,脈衝微電化學之加工應用與評估,國立中央大學機械工程系,碩士論文,2005。
[44] 紀朝傑,電化學矽加工之研究與分析,國立中央大學機械工程系,碩士論文,2008。
[45] 黃宗霖,Inconel 718 銑削參數最佳化,國立高雄應用科技大學,碩士論文,2014