跳到主要內容

簡易檢索 / 詳目顯示

研究生: 藍晨豪
Chen-Hau Lan
論文名稱: 利用雙偏極化雷達反演雨滴粒徑分布探討午後對流的降水微物理特性
Analysis of Microphysics process under Afternoon Thunderstorm by Retrieved Raindrop Size Distribution from Polarimetric Radar Measurements
指導教授: 林沛練
Pay-Liam Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣科學學系
Department of Atmospheric Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 89
中文關鍵詞: 雨滴粒徑分布降水微物理午後熱對流
外文關鍵詞: Drop Size Distribution, Rain Microphysics, Afternoon Thunderstorm
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雨滴粒徑分佈(DSD)是降水微物理學中的重要參數。雙偏極化雷達系統提供了高時間和高空間解析度的雙偏極化參數,可以用於反演雨滴粒徑分布。從雙偏極化參數中獲取DSD不僅可以增進天氣系統中降水微物理過程的了解和定量降水估計(QPE)的能力,而且可以用於分析天氣系統的微物理過程的演變。在這項研究中,針對3種常用的反演方法進行比較,即μ-Λ法、擬合法以及變分法。利用理想化實驗將不同DSD模型與方法結合,並以加入變分法作為對照組,了解哪種方法可以有效地減少不確定性和反演中的誤差。研究結果顯示,利用變分方法可以得到較好的反演結果而且難以透過二階的多項式擬合來正確描述μ-Λ關係。
    先前一些研究已針對不同的季節、地區和降水型態進行分類,並對DSD進行分析。但是較少有研究關注於台北午後熱對流事件。在本研究中,將雨滴譜儀數據與雙偏極化雷達結合,利用上述較好的反演方法來解析不同微物理過程時DSD的演化。另外我們嘗試分析DSD的變化和不同的降水微物理過程的關聯分析,如碰撞聚合,碰撞破碎或蒸發等過程的影響。通過DSD的反演,可以在降水初期觀察到蒸發過程,導致小雨滴下降。在成熟期和消散期則會發生不同的降雨微物理過程,特別是碰撞聚合過程是成熟階段的主要微物理過程。


    Drop size distribution (DSD) is an elemental parameter in Precipitating microphysics. The polarimetric radar system provides high temporal and high-spatial-resolution polarimetric data which could be used to retrieve Raindrop Size Distribution (DSD). Retrieving DSDs from polarimetric radar measurements not only can extend the capabilities of rain microphysics research and quantitative precipitation estimation (QPE) but also could be used to analyze the evolution of the precipitating weather system. In this study, three commonly used retrieved methods are compared, namely the μ-Λ method, the fitting method and the variational method. Use idealized experiments to combine different DSD models with different methods, and add variational methods to understand which method can effectively reduce uncertainty and errors in retrieval. The research results show that the variational method can get better results and it is difficult to correctly describe the μ-Λ relationship through second-order polynomial fitting.
    On the other hand, the statistical relationship for DSD in previous researches had been classified by different seasons, regions, and rain types. However, seldom research focuses on the Taipei thunderstorm event. In this study, the disdrometer data combine with the polarimetric radar variables has been used to resolve explicitly the evolution of DSDs associated with different microphysics processes. Moreover, we try to categorize the feature of DSD Under the influence of collisional coalescence, breakup, or drop settling processes. In the result of retrieved DSD, the evaporation process can be observed in initial stage. Different microphysical process occurs in mature stage and dissipation stage, coalescence process is the main microphysics process in mature stage.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 一、 緒論 1 1.1 前言與文獻回顧 1 1.2 研究方向 3 二、 資源來源 4 2.1 觀測實驗介紹 4 2.2 觀測儀器介紹 4 2.2.1 五分山S-band雷達 4 2.2.2 地面觀測站 4 2.2.3 撞擊式雨滴譜儀(JWD) 4 三、 資料處理 6 3.1 DSD參數計算 6 3.1.1 雨滴粒徑分布的計算 6 3.1.2 DSD模型介紹 6 3.1.3 DSD物理參數介紹 10 3.2 雙偏極化參數計算 11 3.2.1 雙偏極化參數介紹 11 3.2.2 T-Matrix計算 14 3.3 資料品管 14 3.3.1 雷達資料品管 14 3.3.2 JWD品管 14 四、 方法介紹 15 4.1 DSD反演方法介紹 15 4.1.1 μ-Λ法 15 4.1.2 擬合法 16 4.1.3 變分法 17 4.2 對流、層狀降水分類方法 19 五、 結果討論 20 5.1 統計資料與擬合關係式 20 5.2 反演結果比較 21 5.2.1 實驗設計 21 5.2.2 實驗一:不同反演方法的誤差來源 22 5.2.3 實驗二:反演方法在不同回波大小的誤差 24 5.2.4 實驗三:實際個案分析 25 5.3 個案分析結果 26 5.3.1 個案介紹 26 5.3.2 CFAD分析 26 5.4 微物理過程分析 27 5.4.1 雷達雙偏極化參數分析 27 5.4.2 反演後DSD微物理分析 27 5.4.3 成熟期與消散期的比較 29 六、 結論與未來展望 31 七、 參考文獻 33 附表 37 附圖 38

    毛又玉,2007:「台灣北部地區層狀與對流降水的雨滴粒徑分布特性」,國立中央大學碩士論文。
    曾昭誠,2016: 「利用2016年TASSE實驗期間X-band雷達資料反演及分析雨滴粒徑分布特性」,國立中央大學碩士論文。
    盧可昕,2018:利用雙偏極化雷達及雨滴譜儀觀測資料分析 2008 年西南氣流實驗 期間強降雨事件的雲物理過程。國立中央大學大氣物理所碩士論文。
    Brandes, E. A., G. F. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674-685.
    Brandes, E. A., G. F. Zhang, and J. Vivekanandan, 2004: Drop size distribution retrieval with polarimetric radar: Model and application. J. Appl. Meteor., 43, 461-475.
    Brandes, E. A., G. F. Zhang, and J. Z. Sun, 2006: On the influence of assumed drop size distribution form on radar-retrieved thunderstorm microphysics. J. Appl. Meteor. Climatol., 45, 259-268.
    Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354-365.
    Byrd, R. H., P. H. Lu, J. Nocedal, and C. Y. Zhu, 1995: A Limited Memory Algorithm for Bound Constrained Optimization. Siam Journal on Scientific Computing, 16, 1190-1208.
    Cao, Q., G. F. Zhang, and M. Xue, 2013: A Variational Approach for Retrieving Raindrop Size Distribution from Polarimetric Radar Measurements in the Presence of Attenuation. J. Appl. Meteor. Climatol., 52, 169-185.
    Cao, Q., G. F. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 2238-2255.
    Chang, W. Y., T. C. C. Wang, and P. L. Lin, 2009: Characteristics of the Raindrop Size Distribution and Drop Shape Relation in Typhoon Systems in the Western Pacific from the 2D Video Disdrometer and NCU C-Band Polarimetric Radar. J. Appl. Meteor. Ocean., 26, 1973-1993.
    Chang, W. Y., G. Lee, B. J. D. Jou, W. C. Lee, P. L. Lin, and C. K. Yu, 2020: Uncertainty in Measured Raindrop Size Distributions from Four Types of Collocated Instruments. Remote Sens., 12, 23.
    Chen, C. S., and Y. L. Chen, 2003: The rainfall characteristics of Taiwan. Mon. Wea. Rev., 131, 1323-1341.
    D’Adderio, L. P., F. Porcù, and A. Tokay, 2015: Identification and Analysis of Collisional Breakup in Natural Rain. J. Atmos. Sci., 72, 3404-3416.
    Dolan, B., B. Fuchs, S. A. Rutledge, E. A. Barnes, and E. J. Thompson, 2018: Primary Modes of Global Drop Size Distributions. J. Atmos. Sci., 75, 1453-1476.
    Huang, H., G. F. Zhang, K. Zhao, S. Liu, L. Wen, G. Chen, and Z. W. Yang, 2019: Uncertainty in Retrieving Raindrop Size Distribution from Polarimetric Radar Measurements. J. Appl. Meteor. Ocean., 36, 585-605.
    Huang, X.-Y., 2000: Variational Analysis Using Spatial Filters. Mon. Wea. Rev., 128, 2588-2600.
    Janapati, J., and Coauthors, 2020: Raindrop Size Distribution Characteristics of Indian and Pacific Ocean Tropical Cyclones Observed at India and Taiwan Sites. J. Meteorol. Soc. Jpn., 98, 299-317.
    Jung, S. A., D. I. Lee, B. J. D. Jou, and H. Uyeda, 2012: Microphysical Properties of Maritime Squall Line Observed on June 2, 2008 in Taiwan. J. Meteorol. Soc. Jpn., 90, 833-850.
    Kalogiros, J., M. N. Anagnostou, E. N. Anagnostou, M. Montopoli, E. Picciotti, and F. S. Marzano, 2013: Optimum Estimation of Rain Microphysical Parameters From X-Band Dual-Polarization Radar Observables. Ieee Transactions on Geoscience and Remote Sensing, 51, 3063-3076.
    Kozu, T., and K. Nakamura, 1991: Rainfall Parameter-Estimation from Dual-Radar Measurements Combining Reflectivity Profile and Path-Integrated Attenuation. J. Appl. Meteor. Ocean., 8, 259-270.
    Kumjian, M. R., and O. P. Prat, 2014: The Impact of Raindrop Collisional Processes on the Polarimetric Radar Variables. J. Atmos. Sci., 71, 3052-3067.
    Lee, M. T., P. L. Lin, W. Y. Chang, B. K. Seela, and J. Janapati, 2019: Microphysical Characteristics and Types of Precipitation for Different Seasons over North Taiwan. J. Meteorol. Soc. Jpn., 97, 841-865.
    Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 112, 1177-1194.
    Mahale, V. N., G. F. Zhang, M. Xue, J. D. Gao, and H. D. Reeves, 2019: Variational Retrieval of Rain Microphysics and Related Parameters from Polarimetric Radar Data with a Parameterized Operator. J. Appl. Meteor. Ocean., 36, 2483-2500.
    Marshall, J. S., and W. M. K. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165-166.
    Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065-3081.
    Mishchenko, M. I., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl Opt, 39, 1026-1031.
    Prat, O. P., and A. P. Barros, 2007: A Robust Numerical Solution of the Stochastic Collection–Breakup Equation for Warm Rain. J. Appl. Meteor. Climatol., 46, 1480-1497.
    Rogers, R. R., 1988: Raindrop Collision Rates. J. Atmos. Sci., 46, 2469-2472.
    Sauvageot, H., and J. P. Lacaux, 1995: The Shape of Averaged Drop Size Distributions. J. Atmos. Sci., 52, 1070-1083.
    Seela, B. K., J. Janapati, P. L. Lin, P. K. Wang, and M. T. Lee, 2018: Raindrop Size Distribution Characteristics of Summer and Winter Season Rainfall Over North Taiwan. J Geophys Res-Atmos, 123, 11602-11624.
    Steiner, M., R. A. Houze, Jr., and S. E. Yuter, 1995: Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data. J. Appl. Meteor., 34, 1978-2007.
    Testik, F. Y., and B. Pei, 2017: Wind Effects on the Shape of Raindrop Size Distribution. J. Hydrometeor., 18, 1285-1303.
    Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The Concept of “Normalized” Distribution to Describe Raindrop Spectra: A Tool for Cloud Physics and Cloud Remote Sensing. J. Appl. Meteor., 40, 1118-1140.
    Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519-542.
    Thurai, M., C. R. Williams, and V. N. Bringi, 2014: Examining the correlations between drop size distribution parameters using data from two side-by-side 2D-video disdrometers. Atmos. Res., 144, 95-110.
    Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size Distribution. J. Climate Appl. Meteor., 22, 1764-1775.
    Ulbrich, C. W., and D. Atlas, 2007: Microphysics of raindrop size spectra: Tropical continental and maritime storms. J. Appl. Meteor. Climatol., 46, 1777-1791.
    Wilson, A. M., and A. P. Barros, 2014: An Investigation of Warm Rainfall Microphysics in the Southern Appalachians: Orographic Enhancement via Low-Level Seeder–Feeder Interactions. J. Atmos. Sci., 71, 1783-1805.
    Xie, X. X., R. Evaristo, S. Troemel, P. Saavedra, C. Simmer, and A. Ryzhkov, 2016: Radar Observation of Evaporation and Implications for Quantitative Precipitation and Cooling Rate Estimation. J. Appl. Meteor. Ocean., 33, 1779-1792.
    Zhang, G. F., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. Ieee Transactions on Geoscience and Remote Sensing, 39, 830-841.
    Zhang, H. S., Y. Zhang, H. R. He, Y. Q. Xie, and Q. W. Zeng, 2017: Comparison of Raindrop Size Distributions in a Midlatitude Continental Squall Line during Different Stages as Measured by Parsivel over East China. J. Appl. Meteor. Climatol., 56, 2097-2111.

    QR CODE
    :::