跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝皓宇
Hao-Yu Hsieh
論文名稱: 氫預混燃燒:層紊流火焰速度受不同稀釋劑、Lewis 數、層流火焰厚度、溫度和壓力效應之影響
Hydrogen Premixed Combustion: Effects of Diluents, Lewis Number, Laminar Flame Thickness, Temperature and pressure on Laminar and Turbulent Flame Speeds
指導教授: 施聖洋
Shenqyang (Steven) Shy
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 114
語文別: 英文
論文頁數: 130
中文關鍵詞: 氫氣火焰甲烷火焰層流與紊流火焰速度高壓與高溫Lewis 數惰性氣體稀釋層流火焰厚度
外文關鍵詞: Hydrogen flame, methane flame, laminar and turbulent flame speeds, elevated pressure and temperature, Lewis number, diluent, laminar flame thickness
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要量測氦氣稀釋氫氣(H2/O2/He)混合物的層流火焰速度(SL),以及使用調整稀釋劑氮氣濃度(XN2)的目標導向氫氣與甲烷混合燃氣(H2/O2/N2和CH4/O2/N2),來研究Lewis數(Le)、層流火焰厚度(dL)、壓力(p)與未燃氣溫度(Tu),對紊流火焰速度(ST)之影響。實驗研究採用已建置之高溫高壓高紊流雙腔體十字型爆炸設備,此設備由一大型安全等壓外腔體與十字型風扇擾動內腔體組成。球狀火焰傳遞過程是使用高速攝影機(Phantom V711)與紋影光學影像技術來記錄,拍攝張數為每秒10,000幀、畫面解析度為800 x 800像素,拍攝尺寸固定為125 x 125 mm2。將這些球狀火焰影像經過處理和分析後,可獲得火焰半徑隨時間變化的關係,並以此量測出SL與ST。本論文之實驗研究結果可分為兩部份。
    第一部份針對貧油氦氣稀釋氫氣火焰的層流火焰速度進行量測,並評估七種最先進的化學反應機制對其的預測能力。在phi = 0.3、0.45、0.6,p = 1、3、5 atm,Tu = 300K與400K的條件下,共進行11組H2/O2/He混合燃氣實驗,並採用四種先進的火焰速度修正方法來獲得SL。結果顯示,以He取代N2能有效抑制熱擴散不穩定性,並拓展可量測SL的phi與p範圍。此外,將N2替換為He顯著減少了與火焰拉伸率相關的非線性效應,從而提高量測SL的準確度。然而,當比較實驗量測與化學動力學模型預測之結果,發現所有受測的化學反應機制均無法準確預測全部實驗量測結果,尤其是在Tu = 400K、phi = 0.45、p = 3和5 atm的條件下,差異最為顯著。此結果強調了未來針對高溫條件對於模型評估與發展的重要性。此外,這些差異可能部分來自於所採用之傳輸模型的限制,因此需對傳輸模型進行後續改進與驗證。第二部分則探討紊流火焰速度ST。使用前述之二種混合燃氣H2/O2/N2 (phi = 0.45, Le = 0.35)和CH4/O2/N2 (phi = 1.0, Le ~= 1.0)在p = 1、2、5 atm,Tu = 300K與400K的條件下,來研究Le、p、Tu與dL的對ST的影響。實驗結果顯示ST隨p或Tu增加而上升,但ST/SL隨Tu增加而下降。此外,ST亦隨dL減少而增加,且低Le數火焰之 ST會因壓力上升而顯著提升,但又會因Tu增加而抑制。最後,H2/O2/N2火焰的ST可透過planar, twin, critically strained laminar flames的SL與dL特性進行量化描述,這與leading point概念的一致。


    This dissertation measures the laminar flame speed (SL) using helium-diluted hydrogen (H2/O2/He) mixtures and investigates various effects on turbulent flame speeds (ST) using hydrogen (H2/O2/N2) and methane (CH4/O2/N2) as fuels with different nitrogen (N2) diluents concentrations (XN2) to understand the dependence of ST on Lewis number (Le), laminar flame thickness (dL), pressure (p), and unburned gas temperature (Tu). Experiments are conducted in an already-established high-pressure, high-temperature and high-turbulence dual-chamber cruciform explosion facility. Such explosion facility was constructed by a huge capsule-like outer chamber and a large inner cruciform fan-stirred combustion chamber. The self-propagation spherical flames are recorded by a Phantom V711 high-speed camera using the schlieren imaging technique operated at a frame rate of 10,000 frames/s with 800 x 800 pixels having a fixed view field of 125 x 125 mm2. By processing these spherical flame images, the dependency of the flame radius <R> on time is extracted, from which the values of SL and ST are obtained. The results of this dissertation are divided into two main parts.
    The first part is to measure the laminar flame speed of lean helium-diluted hydrogen spherical flames and evaluate the performance of seven state-of-the-art chemical kinetic mechanisms. 11 cases of lean H2/O2/He mixtures are conducted under the conditions of phi = 0.3, 0.45, and 0.6, p = 1, 3, and 5 atm, and Tu = 300K and 400K and laminar flame speeds are evaluated adopting four state-of-the-art flame-speed-correction methods. The obtained results show that substitution of N2 with He offers the opportunity to suppress thermal-diffusional instability under the studied conditions, enabling the measurement of lean hydrogen laminar flame speeds over a broader range of equivalence ratios and pressures. Furthermore, substituting N2 with He significantly reduces the influence of nonlinear effects related to flame stretch rate, thereby improving the accuracy of SL evaluations. When the measured data and the chemical kinetics predicted data are compared, it is found that none of the tested chemical models can match the experimental data, with differences particularly pronounced in preheated (Tu = 400K) moderately lean (phi = 0.45) flames under elevated pressures (p = 3 and 5 atm). Since chemical kinetic mechanisms of lean hydrogen burning have not yet been tested against experimental data on SL, obtained at Tu = 400K, the present results call for further assessment and development of such models for elevated temperature conditions. These differences between the measured and computed flame speeds could in part be attributed to limitations of the adopted transport models, thus also calling for further assessment and development of them. The second part is regarding the ST; the H2/O2/N2 (phi = 0.45, Le = 0.35) and CH4/O2/N2 (phi = 1.0, Le ~= 1.0) mixtures are used to study the effect of Le, p, Tu, dL on ST under the conditions of p = 1, 2, and 5 atm, and Tu = 300K and 400K. Results show that the measured ST increase with increasing p and/or Tu, whereas ST/SL is decreased with increasing Tu. Furthermore, ST increases with decreasing the thickness dL. An increase in ST of low-Lewis-number flames is promoted by an increase in pressure, but is mitigated by an increase in Tu. The results of H2/O2/N2 flame can quantitatively be described by substituting SL and dL with the counterpart characteristics of planar, twin, critically strained laminar flames, in line with leading point concept.

    Abstract i 摘要 iii 誌謝 v Content vii Figure Content x Table Content xiv Nomenclature xv 第一章 序言 1 Chapter I Introduction 4 1.1 Background and Motivation 4 1.2 Hydrogen as a Fuel in Combustion 4 1.3 Importance of Fundamental Combustion Research 6 1.4 Objectives of This Dissertation 7 1.5 Outline 8 第二章 文獻回顧 9 Chapter II Literature Review 11 2.1 Laminar Flame 11 2.1.1 Premixed Laminar Flame and Laminar Flame Speed 11 2.1.2 Laminar Spherical Flame 14 2.1.3 Determination of Laminar Flame Speed by Spherical Flame Method 17 2.2 Turbulent Flame 18 2.2.1 Premixed Turbulent Flame and Turbulent Flame Speed 18 2.2.2 Determination of Turbulent Flame Speed by Spherical Flame Method 21 2.3 Combustion Characteristics of Hydrogen 23 2.4 Effects of Initial Temperature and Initial Pressure 26 2.4.1 Initial Temperature Effect 26 2.4.2 Initial Pressure Effect 27 2.5 Flame Instabilities and Lewis Number Effect 30 2.6 Effect of Laminar Flame Thickness 34 2.7 Effect of Diluent 36 2.8 Leading Point Concept of Turbulent Premixed Flame 37 第三章 實驗設備與方法 41 Chapter III Experimental Methods 43 3.1 Experiment Apparatus 43 3.1.1 High-pressure, High-temperature and High-turbulence Dual-chamber Cruciform Explosion Facility 43 3.1.2 Schlieren Imaging Optical Setup and Image Processing Method 48 3.1.3 Ignition Subsystem 51 3.1.4 Other Relevant Subsystems 52 3.2 Mixtures Preparation 53 3.2.1 Chemical Reaction Balance Equation 53 3.2.2 Target-directed Mixtures 54 3.4 Experimental Methods 56 第四章 結果與討論 59 Chapter IV Results and Discussion 61 4.1 Laminar Flame Speed of H2/O2/He Flames 61 4.1.1 Schlieren Images of H2/O2/He Flames 62 4.1.2 Determination of SL 65 4.1.3 The Results Comparison of Experimental and State-of-art Chemical Mechanisms 74 4.2 Turbulent Flame Speed of H2/O2/N2 and CH4/O2/N2 mixtures 78 4.2.1 Schlieren of Turbulent Premixed Flames 78 4.2.2 Determination of ST 79 4.2.3 Leading Point Concept 84 第五章 結論 90 Chapter V Conclusions and Future Works 92 5.1 Conclusions 92 5.1.1 Laminar Flame Speed 92 5.1.2 Turbulent Flame Speed 93 5.2 Future Works 93 References 95

    [1] Taiwan’s Pathway to Net-Zero Emissions in 2050, National Development Council, 2022. https://www.ndc.gov.tw/en/Content_List.aspx?n=B927D0EDB57A7A3A
    [2] H. Kobayashi, A. Hayakawa, K.D.K.A. Somarathne, E.C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst. 37 (2019) 109-133.
    [3] S.S. Shy, C.C. Liu, W.T. Shih, Ignition transition in turbulent premixed combustion, Combust. Flame 157 (2010) 341-350.
    [4] B. Lewis, G. von Elbe, Combustion, flames and explosions of gases, Academic Press, Orlando USA, 1987.
    [5] S. Brynolf, J. Hansson, J.E. Anderson, I.R. Skov, T.J. Wallington, M. Grahn, A. D. Korberg, E. Malmgren, M. Taljegård, Review of electrofuel feasibility-prospects for road, ocean, and air transport, Prog. Energy 4 (2022) 042007.
    [6] G.W. Crabtree, M.S. Dresselhaus, M.V. Buchanan, Hydrogen economy, Phys. Today 87 (2002) 39-45.
    [7] R. Coontz, B. Hanson, R.F. Service, A. Cho, G. Vogel, J.A. Turner, N. Demirdöven, J. Deutch, S. Pacala, R. Socolow, Special report: toward a hydrogen economy, Science 305 (2004) 957-972.
    [8] S.R. Turns, An Introduction to Combustion: Concepts and Applications, 3rd ed., McGraw-Hill, New York, 2012.
    [9] N. Peters, Turbulent Combustion, 1st ed., Cambridge University Press, Cambridge, 2000.
    [10] A.A. Konnov, A. Mohammad, V.R. Kishore, N.I. Kim, C. Prathap, S. Kumar, A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+air mixtures, Prog. Energy Combust Sci. 68 (2018) 197-267.
    [11] A.P. Kelley, G. Jomaas, C.K. Law, Critical radius for sustained propagation of spark-ignited spherical flames, Combust. Flame 156 (2009) 1006-1013.
    [12] A.P. Kelley, C.K. Law, Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames, Combust. Flame 156 (2009) 1844-1851.
    [13] S.D. Tse, D.L. Zhu, C.K. Law, Morphology and burning rates of expanding spherical flames in H2-O2-inert mixtures up to 60 atmospheres, Proc. Combust. Insti. 28 (2000) 1793-1800.
    [14] W. Liang, F. Wu, C.K. Law, Extrapolation of laminar flame speeds from stretched flames Role of finite flame thickness, Proc. Combust. Inst. 36 (2017) 1137-1143.
    [15] J. Huo, S. Yang, Z. Ren, D. Zhu, C.K. Law, Uncertainty reduction in laminar flame speed extrapolation for expanding spherical flames, Combust. Flame 189 (2018) 155-162.
    [16] M. Faghih, Z. Chen, J. Huo, Z. Ren, C.K. Law, On the determination of laminar flame speed from low-pressure and super-adiabatic propagating spherical flames, Proc. Combust. Inst. 37 (2019) 1505-1512.
    [17] F. Wu, C.K. Law, An experimental and mechanistic study on the laminar flame speed, Markstein length and flame chemistry of the butanol isomers, Combust. Flame 160 (2013) 2744-2756.
    [18] F. Wu, W. Liang, Z. Chen, Y. Ju, C.K. Law, Uncertainty in stretch extrapolation of laminar flame speed from expanding spherical flames, Proc. Combust. Inst. 35 (2015) 663-670.
    [19] S.D. Tse, D. Zhu, C.K. Law, Optically accessible high-pressure combustion apparatus, Rev. Sci. Instrum. 75 (2004) 233-239.
    [20] D. Bradley, R.A. Hicks, M. Lawes, C.G.W. Sheppard, R. Woolley, The measurement of laminar burning velocities and markstein numbers for iso-octane–air and iso-octane–n-heptane–air mixtures at elevated temperatures and pressures in an explosion bomb, Combust. Flame 115 (1998) 126-144.
    [21] D. Bradley, M.Z. Haq, R.A. Hicks, T. Kitagawa, M. Lawes, C.G.W. Sheppard, R. Woolley, Turbulent burning velocity, burned gas distribution, and associated flame surface definition, Combust. Flame 133 (2003) 415-430.
    [22] D. Bradley, M. Lawes, M.S. Mansour, Correlation of turbulent burning velocities of ethanol–air, measured in a fan-stirred bomb up to 1.2 MPa, Combust. Flame 158 (2011) 123-138.
    [23] D. Bradley, M. Shehata, M. Lawes, P. Ahmed, Flame extinctions critical stretch rates and sizes, Combust. Flame 212 (2020) 459-468.
    [24] D. Bradley, M. Lawes, M.E. Morsy, Combustion-induced turbulent flow fields in premixed flames, Fuel 290 (2021) 119972.
    [25] D. Bradley, M. Lawes, M.E. Morsy, Measurement of turbulence characteristics in a large scale fan-stirred spherical vessel, J. Turbul. 20 (2019) 195-213.
    [26] R.G. Abdel-Gayed, K.J. Al-Khishali, D. Bradley, Turbulent Burning velocities and flame straining in explosions, Proc. R. Soc. Lond. A 391 (1984) 393-414.
    [27] A.N. Lipatnikov, Y.R. Chen, S.S. Shy, An experimental study of the influence of Lewis number on turbulent flame speed at different pressures, Proc. Combust. Inst. 39 (2023) 2339-2347.
    [28] M.T. Nguyen, D.W. Yu, S.S. Shy, General correlations of high pressure turbulent burning velocities with the consideration of Lewis number effect, Proc. Combust. Inst. 37 (2019) 2391-2398.
    [29] C.C. Liu, S.S. Shy, H.C. Chen, M.W. Peng, On interaction of centrally-ignited, outwardly-propagating premixed flames with fully-developed isotropic turbulence at elevated pressure, Proc. Combust. Inst. 33 (2011) 1293-1299.
    [30] C.C. Liu, S.S. Shy, M.W. Peng, C.W. Chiu, Y.C. Dong, High-pressure burning velocities measurements for centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant Reynolds numbers, Combust. Flame 159 (2012) 2608-2619.
    [31] L.J. Jiang, S.S. Shy, W.Y. Li, H.M. Huang, M.T. Nguyen, High-temperature, high-pressure burning velocities of expanding turbulent premixed flames and their comparison with Bunsen-type flames, Combust. Flame 172 (2016) 173-182.
    [32] S.S. Shy, W.J. Lin, K.Z. Peng, High-intensity turbulent premixed combustion: General correlations of turbulent burning velocities in a new cruciform burner, Proc. Combust. Inst. 28 (2000) 561-568.
    [33] T.S. Yang, S.S. Shy, Two-way interaction between solid particles and homogeneous air turbulence: particle settling rate and turbulence modification measurements, J. Fluid Mech. 526 (2005) 171-216.
    [34] G. Dayma, F. Halter, P. Dagaut, New insights into the peculiar behavior of laminar burning velocities of hydrogen–air flames according to pressure and equivalence ratio, Combust. Flame 161 (2014) 2235-2241.
    [35] W. Han, P. Dai, X. Gouc, Z. Chen, A review of laminar flame speeds of hydrogen and syngas measured from propagating spherical flames, Appl. Energy Combust. Sci. 1-4 (2020) 100008.
    [36] F.N. Egolfopoulos, P. Cho, C.K. Law, Laminar flame speeds of methane-air mixtures under reduced and elevated pressures, Combust. Flame 76 (1989) 375-391.
    [37] C. Xiouris, T. Ye, J. Jayachandran, F.N. Egolfopoulos, Laminar flame speeds under engine-relevant conditions: Uncertainty quantification and minimization in spherically expanding flame experiments, Combust. Flame 163 (2016) 270-283.
    [38] H.J. Kima, K. Vana, D.K. Leeb, C.S. Yooc, J. Parka, S.H. Chung, Laminar flame speed, Markstein length, and cellular instability for spherically propagating methane/ethylene–air premixed flames, Combust. Flame 214 (2020) 464-474.
    [39] T. Shu, Y. Xue, Z.n Zhou, Z. Ren, An experimental study of laminar ammonia/methane/air premixed flames using expanding spherical flames, Fuel 290 (2021) 120003.
    [40] Z. Chen, On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure, Combust. Flame 162 (2015) 2442-2453.
    [41] F.N. Egolfopoulos, D.L. Zhu, C.K. Law, Experimental and numerical determination of laminar flame speeds: Mixtures of C2-hydrocarbons with oxygen and nitrogen, Symp. (Int.) Combust. 23 (1991) 471-478.
    [42] J.S. Santner, S.H. Won, Y. Ju, Chemistry and transport effects on critical flame initiation radius for alkanes and aromatic fuels, Proc. Combust. Inst. 36 (2017) 1457-1465.
    [43] A. Moghaddasa, K. Eisazadeh-Far, H. Metghalchi, Laminar burning speed measurement of premixed n-decane/air mixtures using spherically expanding flames at high temperatures and pressures, Combust. Flame 159 (2012) 1437-1443.
    [44] X. Cai, S. Su, J. Wang, H. Dai, Z. Huang, Morphology and turbulent burning velocity of n-decane/air expanding flames at constant turbulent Reynolds numbers, Combust. Flame 261 (2024) 113283.
    [45] S.Y. Liao, D.M. Jiang, Z.H. Huang, K. Zeng, Q. Cheng, Determination of the laminar burning velocities for mixtures of ethanol and air at elevated temperatures, Appl. Therm. Eng. 27 (2007) 374-380.
    [46] Y.M. Almarzooqa, I. Schoegl, E.L. Petersen, Laminar flame speed measurements of a gasoline surrogate and its mixtures with ethanol at elevated pressure and temperature, Fuel 343 (2023) 128003.
    [47] P. Clavin, Dynamic behavior of premixed flame fronts in laminar and turbulent flows, Prog. Energy Combust. Sci. 11 (1985) 1-59.
    [48] C.K. Wu, C.K. Law, On the determination of laminar flame speeds from stretched flames, Symp. (Int.) Combust. 20 (1985) 1941-1949.
    [49] C.K. Law, Dynamics of stretched flames, Symp. (Int.) Combust. 22 (1989) 1381-1402.
    [50] C.K. Law, C.J. Sung, Structure, aerodynamics, and geometry of premixed flamelets. Prog. Energy Combust. Sci. 26 (2000) 459-505.
    [51] Z. Chen, On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames, Combust. Flame 158 (2011) 291-300.
    [52] A.P. Kelley, J.K. Bechtold, C.K. Law, Premixed flame propagation in a confining vessel with weak pressure rise, J. Fluid Mech. 691 (2012) 26-51.
    [53] R. Borghi, On the structure and morphology of turbulent premixed flames, in: C. Casci, C. Bruno (Eds.), pp. 117-138, Recent Advances in the Aerospace Sciences, Springer, Boston, 1985.
    [54] N. Peters, Length and time scales in turbulent combustion, in: R. Borghi, S.N.B. Murthy (Eds.), pp. 242-256, Turbulent reactive flows, Springer, New York, 1989.
    [55] N. Peters, Laminar flamelet concepts in turbulent combustion, Proc. Combust. Inst. 21 (1988) 1231-1250.
    [56] R.W. Schefer, W.D. Kulatilaka, B.D. Patterson, T.B. Settersten, Visible emission of hydrogen flames, Combust. Flame 156 (2009) 1234-1241.
    [57] A. Keromnès, W.K. Metcalfe, K.A. Heufer, N. Donohoe, A.K. Das, C.J. Sung, J. Herzler, C. Naumann, P. Griebel, O. Mathieu, M.C. Krejci, E.L. Petersen, W.J. Pitz, H.J. Curran, An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures, Combust. Flame 160 (2013) 995-1011.
    [58] M.T. Nguyen, D. Yu, C. Chen, S.S. Shy, General correlations of iso-octane turbulent burning velocities relevant to spark ignition engines, Energies 12 (2019) 1848.
    [59] Y. Wu, V. Modica, B. Rossow, F. Grisch, Effects of pressure and preheating temperature on the laminar flame speed of methane/air and acetone/air mixtures, Fuel 185 (2016) 577-588.
    [60] H.Y. Hsieh, S.M. Mousavi, A.N. Lipatnikov, S.S. Shy, Experimental study of the influence of Lewis number, laminar flame thickness, temperature, and pressure on turbulent flame speed using hydrogen and methane fuels, Proc. Combust. Inst. 40 (2024) 105752.
    [61] C.-W. Chiu, Y.-C. Dong, S.S. Shy, High-pressure hydrogen/carbon monoxide syngas turbulent burning velocities measured at constant turbulent Reynolds numbers, Int. J. Hydrogen Energy 37 (2012) 10935-10946.
    [62] Y. Ai, Z. Zhou, Z. Chen, W. Kong, Laminar flame speed and Markstein length of syngas at normal and elevated pressures and temperatures, Fuel 137 (2014) 339-345.
    [63] C.K. Law, Combustion Physics, Cambridge University Press, New York, 2006.
    [64] F. Oppong, Z. Luo, X. Li, Y. Song, C. Xu, Intrinsic instability of different fuels spherically expanding flames: A review, Fuel Process. Technol. 234 (2022) 107325.
    [65] I. Glassman, R.A. Yetter, N.G. Glumac, Combustion, 5th ed., Elsevier, 2015.
    [66] B. Francolini, L. Fan, E. Abbasi-Atibeh, G. Bourque, P. Vena, J. Bergthorson, Investigation of differential diffusion in lean, premixed, hydrogen-enriched swirl flames, Appl. Energy Combust. Sci. 18 (2024) 100272.
    [67] L. Bergera, A. Attili, H. Pitsch, Synergistic interactions of thermodiffusive instabilities and turbulence in lean hydrogen flames, Combust. Flame 244 (2022) 112254.
    [68] H.C. Lee, P. Dai, M. Wan, A.N. Lipatnikov, Lewis number and preferential diffusion effects in lean hydrogen–air highly turbulent flames, Phys. Fluids 34 (2022) 035131.
    [69] J. Chomiak, A.N. Lipatnikov, Simple criterion of importance of laminar flame instabilities in premixed turbulent combustion of mixtures characterized by low Lewis numbers, Phys. Rev. E 107 (2023) 015102.
    [70] H.C. Lee, B. Wu, P. Dai, M. Wan, A.N. Lipatnikov, Turbulent burning velocity and thermo-diffusive instability of premixed flames, Phys. Rev. E 108 (2023) 035101.
    [71] Z. Liu, S. Yang, C.K. Law, A. Saha, Cellular instability in Le < 1 turbulent expanding flames, Proc. Combust. Inst. 37 (2019) 2611-2618.
    [72] G. Ozel‑Erol, M. Klein, N. Chakraborty, Lewis number effects on flame speed statistics in spherical turbulent premixed flames, Flow Turbul. Combust. 106 (2021) 1043-1063.
    [73] X. Cai, J. Wang, Z. Bian, H. Zhao, M. Zhang, Z. Huang, Self-similar propagation and turbulent burning velocity of CH4/H2/air expanding flames: Effect of Lewis number, Combust. Flame 212 (2020) 1-12.
    [74] X. Gu, Z. Huang, Q. Li, C. Tang, Measurements of laminar burning velocities and Markstein lengths of n-butanol-air premixed mixtures at elevated temperatures and pressures, Energy Fuels 23 (2009) 4900-4907.
    [75] Ya.B. Zeldovich, The theory of combustion and detonation, Publ. Academy of Sciences, Russia, USSR, 1944.
    [76] D.B. Spalding, Some Fundamentals of Combustion, Butterworths Scientific Publications, London, 1955.
    [77] W. Liang, F. Wu, C.K.Law, Extrapolation of laminar flame speeds from stretched flames: Role of finite flame thickness, Proc. Combust. Inst. 36 (2017) 1137-1143.
    [78] R.J. Blint, The relationship of the laminar flame width to flame speed, Combust. Sci. Technol. 49 (1986) 79-92.
    [79] Ya.B. Zel’dovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze, Mathematical theory of combustion and explosions, Consultants Bureau, New York, 1985.
    [80] A.N. Lipatnikov, S.S. Shy, W.Y. Li, Experimental assessment of various methods of determination of laminar flame speed in experiments with expanding spherical flames with positive Markstein lengths, Combust. Flame 162 (2015) 2840-2854.
    [81] D. Bradley, Instabilities and flame speeds in large-scale premixed gaseous explosions, Phil. Trans. R. Soc. London 357 (1999) 3567-3581.
    [82] A. Amato, M. Day, R.K. Cheng, J. Bell, T. Lieuwen, Leading edge statistics of turbulent, lean, H2–air flames, Proc. Combust. Inst. 35 (2015) 1313-1320.
    [83] H.C. Lee, P. Dai, M. Wan, A.N. Lipatnikov, A numerical support of leading point concept, Int. J. Hydrogen Energy 47 (2022) 23444-23461.
    [84] V.R. Kuznetsov, V.A. Sabelnikov, Turbulence and combustion, Hemisphere Publ. Corp., New York, 1990.
    [85] A.N. Lipatnikov, J. Chomiak, Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations, Prog. Energy Combust. Sci. 28 (2002) 1-73.
    [86] U. Ebert, W. van Saarloos, Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts, Physica D 146 (2000) 1-99.
    [87] A. Amato, T.C. Lieuwen, Analysis of flamelet leading point dynamics in an inhomogeneous flow, Combust. Flame 161 (2014) 1337-1347.
    [88] V. Karpov, A. Lipatnikov, V. Zimont, A test of an engineering model of premixed turbulent combustion, Symp. (Int.) Combust. 26 (1996) 249-257.
    [89] A. Lipatnikov, J. Chomiak, Lewis Number Effects in Premixed Turbulent Combustion and Highly Perturbed Laminar Flames, Combust. Sci. Technol. 137 (1998) 277-298.
    [90] P. Venkateswaran, A. Marshall, D.H. Shin, D. Noble, J. Seitzman, T. Lieuwen, Measurements and analysis of turbulent consumption speeds of H2/CO mixtures, Combust. Flame 158 (2011) 1602-1614.
    [91] P. Venkateswaran, A. Marshall, J. Seitzman, T. Lieuwen, Pressure and fuel effects on turbulent consumption speeds of H2/CO blends, Proc. Combust. Inst. 34 (2013) 1527-1535.
    [92] P. Venkateswaran, A. Marshall, J. Seitzman, T. Lieuwen, Turbulent consumption speeds of high hydrogen content fuels from 1-20 atm, J. Eng. Gas Turbines Power 136 (2014) 011501-011504.
    [93] S.P.R. Muppala, M. Nakahara, N.K. Aluri, H. Kido, J.X. Wen, M.V. Papalexandris, Experimental and analytical investigation of the turbulent burning velocity of two-component fuel mixtures of hydrogen, methane and propane, Int. J. Hydrogen Energy 34 (2009) 9258-9265.
    [94] F. Dinkelacker, B. Manickam, S.P.R. Muppala, Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective Lewis number approach, Combust. Flame 158 (2011) 1742-1749.
    [95] F.T.C. Yuen, Ö.L. Gülder, Turbulent premixed flame front dynamics and implications for limits of flamelet hypothesis, Proc. Combust. Inst. 34 (2012) 1393-1400.
    [96] W. Zhang, J. Wang, Q. Yu, W. Jin, M. Zhang, Z. Huang, Investigation of the fuel effects on burning velocity and flame structure of turbulent premixed flames based on leading points concept, Combust. Sci. Technol. 190 (2018) 1354-1376.
    [97] V.A. Sabelnikov, A.N. Lipatnikov, Transition from pulled to pushed premixed turbulent flames due to countergradient transport, Combust. Theor. Model 17 (2013) 1154-1175.
    [98] V.A. Sabelnikov, A.N. Lipatnikov, Transition from pulled to pushed fronts in premixed turbulent combustion: theoretical and numerical study, Combust. Flame 162 (2015) 2893-2903.
    [99] K.Q.N. Kha, V. Robin, A. Mura, M. Champion, Implications of laminar flame finite thickness on the structure of turbulent premixed flames, J. Fluid Mech. 787 (2016) 116-147.
    [100] S.H. Kim, Leading points and heat release effects in turbulent premixed flames, Proc. Combust. Inst. 36 (2017) 2017-2024.
    [101] A.N. Lipatnikov, N. Chakraborty, V.A. Sabelnikov, Transport equations for reaction rate in laminar and turbulent premixed flames characterized by non-unity Lewis number, Int. J. Hydrog. Energy 43 (2018) 21060-21069.
    [102] S. Verma, F. Monnier, A.N. Lipatnikov, Validation of leading point concept in RANS simulations of highly turbulent lean syngas-air flames with well-pronounced diffusional-thermal effects, Int. J. Hydrog. Energy 46 (2021) 9222-9233.
    [103] S.S. Shy, Y.W. Shiu, L.J. Jiang, C.C. Liu, S. Minaev, Measurement and scaling of minimum ignition energy transition for spark ignition in intense isotropic turbulence from 1 to 5 atm, Proc. Combust. Inst. 36 (2017) 1785-1791.
    [104] L.J. Jiang, S.S. Shy, M.T. Nguyen, S.Y. Huang, D.W. Yu, Spark ignition probability and minimum ignition energy transition of the lean iso-octane/air mixture in premixed turbulent combustion, Combust. Flame 187 (2018) 87-95.
    [105] S.S. Shy, W.J. Lin, J.C. Wei, An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion, Proc. R. Soc. Lond. A 456 (2000) 1997-2019.
    [106] Mai Van Tinh, Comparisons of Single- and Dual-channel Sparks Using Conventional and Nanosecond Repetition Pulse Discharges for Laminar and Turbulent Premixed Spherical Flames, Master Thesis, Department of Mechanical Engineering, National Central University, 2022.
    [107] M.T. Nguyen, S.S. Shy, Y.R. Chen, B.L. Lin, S.Y. Huang, C.C. Liu, Conventional spark versus nanosecond repetitively pulsed discharge for a turbulence facilitated ignition phenomenon, Proc. Combust. Inst. 38 (2021) 2801-2808.
    [108] S.S. Shy, Y.C. Liao, Y.R. Chen, S.Y. Huang, Two ignition transition modes at small and large distances between electrodes of a lean primary reference automobile fuel/air mixture at 373 K with Lewis number >> 1, Combust. Flame 225 (2021) 340-348.
    [109] S.S. Shy, Y.R. Chen, B.L. Lin, A. Maznoy, Ignition enhancement and deterioration by nanosecond repetitively pulsed discharges in a randomly-stirred lean n-butane/air mixture at various inter-electrode gaps, Combust. Flame 231 (2021) 111506.
    [110] R.J. Kee, J.F. Crcar, M.D. Smooke, J.A. Miller, PREMIX: A FORTRAN program for modeling steady laminar one-dimensional premixed flames, Report No. SAND-89-8249, Sandia National Laboratories, 1985.
    [111] R.J. Kee, F.M. Rupley, J.A. Miller, CHEMKIN-II: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical kinetics, Report No. SAND-89-8009, Sandia National Laboratories, 1989.
    [112] G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, J.W.C. Gardiner, V.V. Lissianski, Z. Qin, GRI-Mech 3.0 (1999) http://combustion.berkeley.edu/gri-mech/version30/text30.html
    [113] A.N. Lipatnikov, W.Y. Li, L.J. Jiang, S.S. Shy, Does density ratio significantly affect turbulent flame speed? Flow Turbulence Combust. 98 (2017) 1153-1172.
    [114] R.G. Abdel-Gayed, D. Bradley, M. Lawes, Turbulent burning velocities: a general correlation in terms of straining rates, Proc. R. Soc. London A 414 (1987) 389-413.
    [115] A. Burluka, J.F. Griffiths, K. Liu, M. Orms, Experimental studies of the role of chemical kinetics in turbulent flames, Combust. Explos. Shock Waves 45 (2009) 383-391.
    [116] S. Lapointe, G. Blanquart, Fuel and chemistry effects in high Karlovitz premixed turbulent flames, Combust. Flame 167 (2016) 294-307.
    [117] Z. Wang, V. Magi, J. Abraham, Turbulent flame speed dependencies of lean methane-air mixtures under engine relevant conditions, Combust. Flame 180 (2017) 53-62.
    [118] S.D. Tse, D.L. Zhu, C.K. Law, Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres, Proc. Combust. Inst. 28 (2000) 1793-1800.
    [119] M.P. Burke, F.L. Dryer, Y. Ju, Assessment of kinetic modeling for lean H2/CH4/O2/diluent flames at high pressures, Proc. Combust. Inst. 33 (2011) 905-912.
    [120] J. Li, Z. Zhao, A. Kazakov, F.L. Dryer, An updated comprehensive kinetic model of hydrogen combustion, Int. J. Chem. Kinetics 36 (2004) 566-575.
    [121] M.P. Burke, M. Chaos, Y. Ju, F.L. Dryer, S.J. Klippenstein, Comprehensive H2/O2 kinetic model for high-pressure combustion, Int. J. Chem. Kinet. 44 (2012) 444-474.
    [122] E. Ranzi, A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli, A.P. Kelley, C.K. Law, Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels, Prog. Energy Combust. Sci. 38 (2012) 468-501.
    [123] W.K. Metcalfe, S.M. Burke, S.S. Ahmed, H.J. Curran, A hierarchical and comparative kinetic modeling study of C1-C2 hydrocarbon and oxygenated fuels, Int. J. Chem. Kinet. 45 (2013) 638-675.
    [124] M. Goswami, R.J.M. Bastiaans A.A. Konnov, L.P.H. de Goey, Laminar burning velocity of lean H2-CO mixtures at elevated pressure using the heat flux method, Int. J. Hydrogen Energy 39 (2014) 1485-1498.
    [125] A.A. Konnov, Yet another kinetic mechanism for hydrogen combustion, Combust. Flame 203 (2019) 14-22.
    [126] H.Y. Hsieh, A.N. Lipatnikov, S.S. Shy, Laminar flame speeds of lean hydrogen-oxygen-helium mixtures under elevated pressures and temperatures, Combust. Flame 281 (2025) 114412.
    [127] L.D. Landau, E.M. Lifshitz, Fluid mechanics, Pergamon, Oxford, 1987.
    [128] P. Clavin, Dynamical behavior of premixed flame fronts in laminar and turbulent flows, Prog. Energy Combust. Sci. 11 (1985) 1-59.
    [129] V.P. Karpov, Cellular flame structure under conditions of a constant-volume bomb and its relationship with vibratory combustion, Combust. Expl. Shock Waves 1 (1965) 39-42.
    [130] L. Berger, M. Grinberg, B. Jürgens, P.E. Lapenna, F. Creta, A. Attili, H. Pitsch, Flame fingers and interactions of hydrodynamic and thermodiffusive instabilities in laminar lean hydrogen flames, Proc. Combust. Inst. 39 (2023) 1525-1534.
    [131] M.P. Burke, Z. Chen, Y. Ju, F.L. Dryer, Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames, Combust. Flame 156 (2009) 771-779.
    [132] M. Matalon, B.J. Matkowsky, Flames as gas dynamic discontinuities, J. Fluid Mech. 124 (1982) 239-260.
    [133] P. Pelcé, P. Clavin, Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames, J. Fluid Mech. 124 (1982) 219-237.
    [134] M.L. Frankel, G.J. Sivashinsky, On effects due to thermal expansion and Lewis number in spherical flame propagation, Combust. Sci. and Technol. 31 (1983) 131-138.
    [135] D.R. Dowdy, D.B. Smith, S.C. Taylor, A. Williams, The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen-air mixtures, Proc. Combust. Inst. 23 (1990) 325-332.
    [136] T. Tahtouh, F. Halter, C. Mounaïm-Rousselle, Nonlinear effects of stretch on the flame front propagation, Combust. Flame 156 (2009) 1735-1743.
    [137] V.V. Zamashchikov, V.A. Alekseev, A.A. Konnov, Laminar burning velocities of rich near-limiting flames of hydrogen, Int. J. Hydrogen Energy 39 (2014) 1874-1881.
    [138] A.N. Lipatnikov, Some issues of using Markstein number for modeling premixed turbulent combustion, Combust. Sci. and Technol. 119 (1996) 131-154.
    [139] G.H. Markstein, Experimental and theoretical studies of flame front stability, J. Aeronaut. Sci.18 (1951) 199-220.
    [140] V.P. Karpov, A.N. Lipatnikov, P. Wolanskii, Finding the Markstein number using the measurements of expanding spherical laminar flames, Combust. Flame 109 (1997) 436-448.
    [141] M. Matalon, J.K. Bechtold, Spherically expanding flames, in: Proceedings of 1987 ASME/JSME Thermal Engineering Joint Conference, vol. 1, 1987, pp. 95-101.
    [142] P.D. Ronney, G.I. Sivashinsky, A theoretical study of propagation and extinction of nonsteady spherical flame fronts, SIAM J. Appl. Math. 49 (1989) 1029-1046.
    [143] A.P. Kelley, W. Liu, Y.X. Xin, A.J. Smallbone, C.K. Law, Laminar flame speeds, non-premixed stagnation ignition, and reduced mechanisms in the oxidation of iso-octane, Proc. Combust. Inst. 33 (2011) 501-508.
    [144] J.X. Zhou, M. Cordier, C. Mounaïm-Rousselle, F. Foucher, Experimental estimate of the laminar burning velocity of iso-octane in oxygen-enriched and CO2-diluted air, Combust. Flame 158 (2011) 2375-2383.
    [145] B. Galmiche, F. Halter, F. Foucher, Effects of high pressure, high temperature and dilution on laminar burning velocities and Markstein lengths of iso-octane/air mixtures, Combust. Flame 159 (2012) 3286-3299.
    [146] J. Jayachandran, A. Lefebvre, R. Zhao, F. Halter, E. Varea, B. Renou, F.N. Egolfopoulos, A study of propagation of spherically expanding and counterflow laminar flames using direct measurements and numerical simulations, Proc. Combust. Inst. 35 (2015) 695-702.
    [147] A.A. Burluka, A.M.T. El-Dein Hussin, C.G.W. Sheppard, K. Liu, V. Sanderson, Turbulent combustion of hydrogen-CO mixtures, Flow Turbulence Combust. 86 (2011) 735-749.
    [148] S. Wang, A.M. Elbaz, O.Z. Arab, W.L. Roberts, Turbulent flame speed measurement of NH3/H2/air and CH4/air flames and a numerical case study of NO emission in a constant volume combustion chamber (C.V.C.C), Fuel 332 (2023) 126152.
    [149] D. Bradley, C.G.W. Sheppard, R. Woolley, D.A. Greenhalgh, R.D. Lockett, The development and structure of flame instabilities and cellularity at low Markstein number explosions, Combust. Flame 122 (2000) 195-209.
    [150] C.R. Bauwens, J.M. Bergthorson, S.B. Dorofeev, Experimental study of spherical-flame acceleration mechanisms in large-scale propane–air flames, Proc. Combust. Inst. 35 (2015) 2059-2066.
    [151] X. Han, W. Weng, Y. He, Z. Wang, A.A. Konnov, Experimental and kinetic modelling study on the laminar burning velocities of ultra-lean n-heptane flames at atmospheric pressure, Combust. Flame 268 (2024) 113613.
    [152] N.J. Brown, L.A. Bastien, P.N. Price, Transport properties for combustion modeling, Prog. Energy Combust. Sci. 37 (2011) 565-582.
    [153] R.J. Kee, G. Dixon-Lewis, J. Warnatz, M.E. Coltrin, J.A. Miller, A Fortran computer code package for the evaluation of gas-phase multicomponent transport properties, Report No. SAND86-8246, Sandia National Laboratories, 1986.
    [154] P. Paul, J. Warnatz, A re-evaluation of the means used to calculate transport properties of reacting flows, Proc. Combust. Inst. 27 (1998) 495-504.
    [155] P. Middha, B. Yang, H. Wang, A first-principle calculation of the binary diffusion coefficients pertinent to kinetic modeling of hydrogen/oxygen/helium flames, Proc. Combust. Inst. 29 (2002) 1361-1369.
    [156] Y. Dong, A.T. Holley, M.G. Andac, F.N. Egolfopoulos, S.G. Davis, P. Middha, H. Wang, Extinction of premixed H2/air flames: chemical kinetics and molecular diffusion effects, Combust. Flame 142 (2005) 374-387.
    [157] A.W. Jasper, E. Kamarchik, J.A. Miller, S.J. Klippenstein, First-principles binary diffusion coefficients for H, H2, and four normal alkanes + N2, J. Chem. Phys. 141 (2014) 124313.
    [158] A.W. Jasper, J.A. Miller, Lennard-Jones parameters for combustion and chemical kinetics modeling from full-dimensional intermolecular potentials, Combust. Flame 161 (2014) 101-110.
    [159] H. Kobayashi, K. Seyama, H. Hagiwara, Y. Ogami, Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature, Proc. Combust. Inst. 30 (2005) 827-834.
    [160] T.L. Howarth, E.F. Hunt, A.J. Aspden, Thermo-diffusively-unstable lean premixed hydrogen flames: Phenomenology, empirical modelling, and thermal leading points, Combust. Flame 253 (2023) 112811.
    [161] M. Rieth, A. Gruber, J.H. Chen, The effect of pressure on lean premixed hydrogen-air flames, Combust. Flame 250 (2023) 112514.
    [162] S.M. Mousavi, A.N. Lipatnikov, Are differential diffusion effects of importance when burning hydrogen under elevated pressures and temperatures? Int. J. Hydrogen Energy 49(B) (2024) 1048-1058.
    [163] C.K. Law, Propagation, structure and limit phenomena of laminar flames at elevated pressures, Combust. Sci. Technol. 178 (2006) 334-360.
    [164] J.F. Driscoll, Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities, Prog. Energy Combust. Sci. 34 (2008) 91-134.
    [165] S. Hochgreb, How fast can we burn, 2.0? Proc. Combust. Inst. 39 (2023) 2077-2105.
    [166] A. Lipatnikov, Fundamentals of premixed turbulent combustion, CRC Press, Boca Raton, FL, 2012.
    [167] D. Bradley, A.K.C. Lau, M. Lawes, Flame stretch rate as a determinant as a determinant of turbulent burning velocity, Phil. Trans. R. Soc. London A 338 (1992) 359-387.
    [168] T. Kitagawa, T. Nakahara, K. Maruyama, K. Kado, A. Hayakawa, S. Kobayashi, Turbulent burning velocity of hydrogen–air premixed propagating flames at elevated pressures, Int. J. Hydrogen Energy 33 (2008) 5842-5849.
    [169] X. Cai, Q. Fan, X.-S. Bai, J. Wang, M. Zhang, Z. Huang, M. Aldén, Z. Li, Turbulent burning velocity and its related statistics of ammonia‐hydrogen‐air jet flames at high Karlovitz number: Effect of differential diffusion, Proc. Combust. Inst. 39 (2023) 4215-4226.
    [170] V.A. Sabelnikov, R. Yu, A.N. Lipatnikov, Thin reaction zones in constant-density turbulent flows at low Damköhler numbers: theory and simulations, Phys. Fluids 31 (2019) 055104.
    [171] A.N. Lipatnikov, J. Chomiak, Molecular transport effects on turbulent flame propagation and structure, Prog. Energy Combust. Sci. 31 (2005) 1-73.
    [172] H.L. Dave, A. Mohan, S. Chaudhuri, Genesis and evolution of premixed flames in turbulence, Combust. Flame 196 (2018) 386-399.
    [173] H.C. Lee, P. Dai, M. Wan, A.N. Lipatnikov, Influence of molecular transport on burning rate and conditioned species concentrations in highly turbulent premixed flames, J. Fluid Mech. 928 (2021) A5.
    [174] H.C. Lee, A. Abdelsamie, P. Dai, M. Wan, A.N Lipatnikov, Influence of equivalence ratio on turbulent burning velocity and extreme fuel consumption rate in lean hydrogen-air turbulent flames, Fuel 327 (2022) 124969.
    [175] S. Somappa, V. Acharia, T. Lieuwen, Finite flame thickness effects on KPP turbulent burning velocities, Phys. Rev. E 106 (2022) 055107.
    [176] V.L. Zimont, A.N. Lipatnikov, A numerical model of premixed turbulent combustion of gases, Chem. Phys. Reports 14 (1995) 993-1025.
    [177] M. Zhang, J. Wang, Z. Huang, Turbulent flame structure characteristics of hydrogen enriched natural gas with CO2 dilution, Int. J. Hydrogen Energy 45 (2020) 20426-20435.

    QR CODE
    :::