| 研究生: |
黃鴻傑 Hong-Jie Huang |
|---|---|
| 論文名稱: |
亂相編碼於體積全像之全光學分佈式光纖感測系統之研究 |
| 指導教授: |
孫慶成
Ching-cherng Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當對此多模光纖引入一外力擾動時,例如應力、溫度改變,會導致光
纖內傳導各個模態間的光程有不一致的變化,再利用 LiNbO3 晶體配
合體積全像光學,作為儲存資料、訊號運算,以及顯式結果的媒介,
而結構成此一全光學分佈式光纖感測系統。
由於一獨特的光纖光斑相對於一獨特的外在干擾,因此當此多模
步階式光纖受到外在干擾時,以此光纖光斑當做參考光,同時間以另
一道帶有相當干擾數值的訊號光,兩道光在空間上產生獨特的明亮相
間干涉條紋,利用光折變晶體的特性,將此明亮相間的干涉條紋,以
折射率變化的方式記錄起來,當記錄的步驟完成之後,此一光折變晶
體 LiNbO3 便身兼資料庫與運算器的功能。我們遮蔽住所有帶有干擾
數值的訊號光,以受到獨特外在干擾的光纖光斑照射寫錄完成的晶
體,LiNbO3 便即時地繞射出相對的干擾數值。此一系統的優點在於
資料儲存、訊號運算以及顯示完全是光學的方式,無須電子的媒介,
因而謂之全光學式系統。
此一系統的應用更延伸至分佈式干擾的偵測,不僅僅是定點式外
在干擾的檢測系統,對於不同位置的外在干擾,都能因應需要而設計
出適合的系統,本文就是針對此一要題的研究。
[1] D.Gabor, “A new Microscopic principle, ” Nature 161,777 (1948).
[2] R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography
(Academic Press, New York, 1971).
[3] Asthana and B. Finkelstin, “Superdense optical storage system,”
IEEE Spectrum, p. 25-31 (1995). [4] C. C. Sun, Y. M. Chen, W. C. Su, “All-optical fiber sensing system
based on random phase encoding and volume holographic
interconnection,” Opt. Eng ( Letters ).40, 100-161 ( 2001 )
[5] B. Culshaw and J. Dakin, Optical Fiber Sensor : System and
Applications (Artech. Boston, Mass., 1989).
[6] A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Bullman,
J. J. Lecinstein and K. Nassau, “Optical-induced refractive index
inhomogeneity in LiNbO3 and LiTaO3”, Appl. Phys. Lett. 9, 72
(1966).
[7] F. S. Chen, “Optical induced change of refractive indices in LiNbO3
and LiTaO3,” J. Appl. Phys. Lett. 44,948(1984).
[8] L. Young. W. K. Wing, M. L. W. Thewait and W. D. Crnish,
“Theory of formation of phase holograms in lithium niobate,” Appl.
Phys. Lett. 24,264(1974).
[9] G. A. Alphonse, R. C. Alig, O. L. Staebler and W. Phillips, “Time
dependent characteristics of photo-induced space charge field and
phase holograms in lithium niboate and other photorefractive
materials, ” RCA Review 36,213(1975). [10] D. VonderLinde and A. M. Glass, “Photorefractive effects for reversible holographic storage of information,” J. Appl. Phys. 8, 85 (1975). [11] D. M. Kim, R. R. Shah, T. A. Rabson and F. K. Tittel, “Nonlinear dynamic theory for photorefractive phase hologram formation,” Appl. Phys. Lett. 28,388 (1976). [12] N. V. Kukhtarve, V. B. Markov, S. G. Odulov, M. S. Soskin and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22,949 (1979). [13] J. Feingerg, D. Heiman, A. R. Tanguay and R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51,1297, (1980). [14] A. Yariv and Pochi Yeh, Optical Waves in Crystals (Wiely, New York, 1984). [15] Pochi Yeh, Introduction to photorefractive Nonlinear Optics (Wiley, New York, 1993). [16] W. R. Klein, “Theoretical efficiency of Bragg devices,” Proc. IEEE 54,803 (1996). [17] F. H. Mok, M. C. Tackitt, and H. M. Stoll, “Storage of 500 High-resolution holograms in LiNbO3 Crustal,” Opt. Lett. 16,605 (1991). [18] G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using prthogonal wavelength-multiplexed volume hologram,” Opt. Lett. 17,1471 (1992). [19] H. Y. Li and D. Psaltis, “Three-dimensional holographic disks,”
88
89
Appl. Opt. 33, 3764 (1994).
[20] C. Denz, G. Pauliat, G. Rooson, and T. Tschudi, “Volume
hologram multiplexing using a deterministic phase encoding
method,” Opt. Commum. 85,171 (1991).
[21] C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang, and M. W. Chang,
“Random phase-coded multiplexing of hologram volumes using
ground glass,” Optical Quantum Electronics 28,1551 (1996).
[22] J. T. LaMacchia and D. L. White, “Code multiplex exposure holograms,” Appl. Opt. 7,91 (1986).
[23] T. Okoshi, Optical Fibers (Academic Press, New York, 1982).
[24] G. P. Agrawal, Fiber- Optic Communication Systems (Wiely, New
York, 1997).
[25] 陳逸明,利用亂相編碼與體積全像之全光學式光纖感測系統,
國立中央大學光電所碩士論文,中華民國八十九年.