| 研究生: |
曾建榮 Chien-Jung Tseng |
|---|---|
| 論文名稱: |
鐵與錳含量對A206鋁合金機械性質的影響 Effects of Fe and Mn contents on mechanical properties of A206 alloy |
| 指導教授: |
李勝隆
Sheng-Long Lee |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 疲勞裂縫成長 、破裂韌性 、導電度 、DSC 、機械性質 、Mn 、Fe 、A206鋁合金 |
| 外文關鍵詞: | A206, Fe, Mechanical properties, DSC, Mn, electrical condductivity, fracture toughness, fatigue crack growth |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文是以商用A206鋁合金為基礎,分別添加不同比例的Fe及Mn,以研究此二元素的含量對A206鋁合金拉伸性質的影響;另外也對不同鐵含量對破裂韌性及疲勞裂縫成長特性的影響加以研究。研究中使用光學顯微鏡、電子顯微鏡/電子微探儀(EPMA)、影像分析、導電度量測及熱差掃描分析(DSC)等來觀察材料的微結構。拉伸性質試驗的結果顯示,Fe的增加會使針狀Cu2FeAl7富鐵相的體積分率成比例增加;Mn的增加會抑制針狀富鐵相的形成,使其轉為較圓的中文字型富錳相。高錳合金於鑄造時,部分的錳元素會固溶在基地中,於固溶處理時會析出Cu2Mn3Al20 顆粒,因而阻止其晶粒的成長。針狀、富錳相及Cu2Mn3Al20 等顆粒均會導致鋁基地中的銅固溶量降低;同時,增加鋁基地中的錳含量會延緩強化相的析出。DSC分析顯示θ''的析出動力及析出量會隨著Fe 及Mn含量的增加而降低,尤其以錳的添加為甚。Cu2Mn3Al20 顆粒的析出及其所導致的較小晶粒會增加高錳合金於固溶狀態時的硬度,而T7狀態的硬度則由θ'' 相的析出量來決定。Fe含量的增加會使合金的強度以接近線性的方式遞減,延性更是大幅下降。Mn含量的增加對提升低Fe合金的機械性質之效果不明顯;在高Fe合金,Mn含量的增加會使降伏強度降低,抗拉強度則未有明顯的變化,然而會使延伸率大幅增加。
關於鐵含量對破裂韌性及疲勞裂縫成長特性的影響方面,由於Cu2FeAl7顆粒的斷裂及與基地剝離所形成的空孔,會加速A206合金的破裂過程。增加鐵含量會增加Cu2FeAl7顆粒的體積分率,會導致在區域II及III的裂縫成長速率增加並會降低破裂韌性。在A206合金的破裂過程中,Cu2FeAl7顆粒的破裂模式會影響裂縫延伸速率。在低ΔK (或K)時其破裂模式大多為斷裂,對裂縫延伸的影響較小;而當ΔK (或K)增高時,與基地剝離數量逐漸增多而產生較大的劈裂平面,對裂縫延伸的影響較大。增加鐵含量會輕微降低合金的起始應力強度因子ΔKth,這是由於增加鐵含量會降低其機械強度。
The effects of Fe and Mn contents on tensile properties and effects of Fe contents on fracture toughness and fatigue crack growth behaviors of aluminum-base A206 alloys were investigated. Optical microscopy, scanning electron microscopy/electron microprobe (EPMA), image analysis, electrical conductivity and scanning differential calorimetry (DSC) were used to examine the microstructures of alloys. Results of tensile properties showed that the addition of Fe caused a loss in both ductility and yield strength. Further addition of Mn can recover the ductility, but it caused a further loss in yield strength, and caused no change in tensile strength. In low Mn alloys (0.29 wt% Mn) the primary constituent was the needle shape of Cu2FeAl7, when further addition of Mn the Chinese script of Mn-bearing formed instead. The Cu2Mn3Al20 particles formed in high Mn alloys during solution treatment and resulted in grain growth inhibition. The needle, Mn-bearing and Cu2Mn3Al20 particles cause the solid solution level of copper in matrix to decrease; meanwhile, increasing the Mn solution level retards the precipitation of strengthening phase. DSC analyses show the kinetics and amount of θ'' phase precipitation decrease when the contents of Fe and/or Mn are increased. The smaller grain size induced by the Cu2Mn3Al20 particles and the θ'' phase are the factors that determine the hardness of A206 alloys under as-quenched and T7 treated conditions, respectively.
The fracture processes of A206 alloys are accelerated by void nucleation at Cu2FeAl7 particles as a result of their cracking and decohesion from the matrix. Increasing the Fe content will increase the volume fraction of Cu2FeAl7 particles, which induced higher crack growth rates in regions II and III and reduced fracture toughness. The fracture mode of Cu2FeAl7 particles dominates the crack extension behaviors of high-Fe contained A206 alloys. In low ΔK (or K), the fracture morphology of the particles is mostly in cracking mode. With increasing ΔK (or K), the sites of the particles decohered from Al-matrix increase, associated with big flat cleavage surfaces accelerating the crack extension. The effect of Fe on decreasing threshold stress intensity rangeΔKth is more apparent in higher Fe-content alloy than in lower Fe-content alloys. It is ascribed to the greater mechanical strength in lower Fe-content alloys.
1. John E. Hatch, Aluminum: Properties and Physical Metallurgy, ASM International, Metals Park, Ohio, (1984), pp. 351-377.
2. John E. Hatch, Aluminum: Properties and Physical Metallurgy, ASM International, Metals Park, Ohio, (1984), pp. 320-350.
3. J. R. Davis & Associates, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, Ohio, (1994), pp.89-120.
4. Knutsson and G. Sjoberg, “Aluminum can recycling in Sweden”, Light Metals, 1992, TMS, (1992), pp. 1137-1141.
5. Kearney, “Alloy History”, Trialco Aluminum Data Sheet, Table. 1, Chicago Heigth, IL., (1983).
6. J. Raffin, US Patent No. 3475166 (Oct. 26, 1969).
7. John E. Hatch, Aluminum: Properties and Physical Metallurgy, ASM International, metals park, Ohio, (1984), pp. 362-364.
8. N.J. Davidson, “Review of the Mechanical Properties, Reliability and Usage of Ultra High Strength Aluminum Casting Alloys 201.0 and 206.0”, Current Aluminum Research and Application, (1988), pp. 232-247.
9. J. R. Davis & Associates, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, Ohio, (1994), pp.708-709.
10. D. L. Colwell and R. J. Kissling, “Die and permanent mold casting aluminum alloy minor elements”, AFS Trans., Vol. 69, (1961), pp. 610-615.
11. C. Mascre, “Influence of Iron and Manganese of Type A-S13 (Alpex) Alloys”, Fonderie, Vol. 108, (1955), pp. 4330-4336.
12. P. Janason, “Thermal Fatigue of Cylinder Head Alloys”, AFS Trans., Vol. 160, (1992), pp. 601-607.
13. W. Bonsack, “Iron-Tht Problematic Factor in Quality of Aluminum Alloy Die Casting”, AFS Trans., Vol. 69, (1961), pp. 712-720.
14. S. Jocob and D. Fontaine, “Burning of A-U5GT alloy during heat treatment”, Fonderie, Vol. 294, (1970), pp. 326-336.
15. E.M. Passmore, M.C. Flemings and H.F. Taulor, “Fundamental Studies on Effects of Solution Treatment, Iron Content and Chilling of Sand Cast Aluminum-Copper Alloy”, AFS Trans., Vol. 66, (1958), pp. 96-103.
16. A. Couture, “Iron in aluminum casting alloys-A literature survey”, AFS Int. Cast Metals J., Vol, 6, (1981), pp. 9-17.
17. H. Chadwick, "Hot Shortness of Al-4.5% Cu Alloy", CAST METALS, Vol. 4, No. 1, (1991), pp. 43-49.
18. G. K. Sigworth, “Determining grain size and eutectic modification in aluminum alloy castings”, Modern Casting, July (1987), pp. 23-25.
19. W. Bonsack, “Effects of minor alloying elements on aluminum casting alloys”, ASTM Bull. No. 124, Oct. (1943), pp. 41-51.
20. Vorren, J. E. Evensen and T. B. Pedersen, “Microstructure and mechanical properties of AlSi(Mg) casting alloys”, AFS Trans., (1984), pp. 459-466.
21. P. Skjerpe, “Intermetallic phases formed during DC-casting of an Al-0.25 wt%Fe-0.13 wt%Si alloy”, Metall. Trans. A, Vol, 18, (1987), pp. 189-200.
22. L. A. Bendersky, A. J. Mcalister and F. S. Biancaniello, “Phase transformation during annealing of rapidly solidified Al-rich Al-Fe-Si alloys”, Metall. Trans. A, Vol. 19A, (1988), pp. 2893-2900.
23. B. Xiufang, Z. Guohua, “The Spheroidisation of Needle-Form Iron Compounds in an Al-Si alloy”, AFS International Cast Metal Journal, Vol. 5, (1992), pp. 39-41.
24. Y. Awano and Y. Shimizu, “Non-equilibrium Crystallization of AlFeSi compound in Melt-Superheated Al-Si Alloy Casting”, AFS Trans., Vol. 176. (1990), pp. 889-895.
25. S. Murali, K.S. Raman and K.S.S. Murathy, “Effects of Mg,Fe(impurty) and Solidification Rates on the Fracture Toughness of Al-7Si-0.3Mg Casting Alloys”, Mater. Sci. Eng., Vol. A151, (1992), pp. 1-10.
26. L.A. Narayanan, F.H. Samuel and J.E. Gruzleski, “Dissolution of Iron Intermetallics in Al-Si Alloys Through Nonequilibrium Heat Treatment”, Metall. Trans. A, Vol. 26A, (1995), pp. 2161-2174.
27. G. T. Hahn and A. R. Roesnfield, “Metallurgical factors affecting fracture toughness of aluminum alloys”, Metall. Trans. A, Vol. 6A, (1975), pp. 653-670.
28. E. N. Pan, M. W. Hsieh, S. S. Jang and C. R. Loper, “Study of the influence of processing parameters on the microstructure and properties of A356 aluminum alloy”, AFS Trans., Vol. 89-73, pp. 397-414.
29. W. Laorchan and J. E. Gruzleski, “Grain refinement, modification and melt hydrogen-their effects on micro-porosity, Shrinkage and Impact properties in A356 alloy”, AFS Trans., Vol.92-39, pp. 415-424.
30. 邱弘興,胡瑞峰,.潘永寧, “製程參數對A356 鋁合金孔洞影響之探討”,中國機械工程會第八屆學術研討會, 台北市、民國80年11月24日, pp. 983-992.
31. A. M. Samuel, and F. H. Samuel, “A metallographic study of porosity and fracture in relation to the tensile properties in 319.2 end chill castings”, Metall. Mater. Trans. A, Vol.26A, (1995), pp. 2359-2372.
32. A. M. Samuel and F. H. Samuel, “Effect of melt treatment, solidification conditions and porosity level on the tensile properties of 319.2 endchill aluminum castings”, J. Mater. Sci., Vol. 30, (1995), pp. 4823-4833.
33. R. Dasgupta, C. C. Brown and S. Marek, “Effect of increased magnesium content on the mechanical properties of sand-cast 319 aluminum alloy”, AFS Trans., Vol. 89-34, pp. 245-253.
34. D. Argo, J. E. Gruzleski, “Porosity in modified aluminum alloy castings”, AFS Trans., Vol. 88-16, pp. 65-74.
35. W. R. Opie and N. J. Grant, “Hydrogen solubility in aluminum and some aluminum alloys”, Trans. AIME, Vol. 188, (1950), pp. 1237-1241.
36. S.T. Kao, E. Chang and Y.W. Lee, “Role of Interdendritic Fluid Flow on the Porosity Formation in A206 Alloy Plate Castings”, Materials Trans., JIM, Vol. 35, no. 9, (1994), pp. 632-639.
37. A.L. Kearney and J. Raffin, “Mechanical Properties of Aluminum Castings Alloys X 206.0-T4 and XA206.0-T7 vs. Comparable Alloys at Various Cooling Rates”, AFS Trans., (1977), pp. 559-570.
38. G.K. Mac Allister, “Effects of Cooling Rates on the Mechanical Properties of A206.0-T4 and A206.0-T71 Aluminum Alloy Castings”, Current Aluminum Research and Application, AFS Trans., (1988), pp. 157-168.
39. H. T. Wu, “The refinement of aluminum and its alloys”, 鑄工, 第14期 (Sept. 1977), pp.47-52.
40. M. Easton and D. StJohn, “Grain refinement of aluminum alloys: part II. Confirmation of, and a mechanism for, the solute paradigm”, Metall. Mater. Trans. A, Vol. 30A, (1999), pp. 1625-1633.
41. M. M. Guzowski, G. K. Sigworth and D. A. Senter, “The role of boron in the grain refinement of aluminum with titanium”, Metall. Trans., Vol. 18A, (1987), pp. 603-619.
42. H. T. Wu, L. C. Wang and S. K. Kung, “Influence of grain refine master alloys addition on A356 aluminum alloy”, 鑄工, 第29期 (June 1981), pp.10-18.
43. L. F. Mondolfo, Aluminum Alloys: Structure and Properties, London, Butterworth’s, Ltd., (1976), p. 437-439.
44. M. Easton and D. StJohn, “Grain refinement of aluminum alloys: part I. The nucleant and solute paradigms-a review of the literature”, Metall. Mater. Trans. A, Vol. 30A, (1999), pp. 1613-1623.
45. M. Johnsson and L. Bäckerud, Z. Metallkd., Vol. 87, no. 3, (1996), pp. 216-220.
46. G. K. Sigworth, S. Shivkumar and D. Apelian, “The influence of molten metal processing on mechanical properties of cast Al-Si-Mg alloys”, AFS Trans., Vol. 139, (1989), pp. 811-824.
47. P. S. Mohanty and J. E. Gruzleski, “Mechanism of grin refinement in aluminum”, Acta Metall. Mater., Vol. 43, pp. 2001-2012.
48. Robert E. Read-Hill, “Physical Metallurgy Principles”, 3rd ed., (1992), pp.192-193.
49. L.F. Mondolfo, “Aluminum Alloys: Structure and properties”, London, Butterwordths and Co. Ltd., (1976), pp. 693-724.
50. F.R. Mollard, “Influence of Chemical Composition and Heat Treatment on Properties of KO-1 Alloy”, AFS Trans., Vol. 79, (1970), pp. 443-449.
51. S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, T.G. Langdon, “Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al–Mg alloys”, Acta Mater., Vol. 50, (2002), pp. 553–564.
52. John E. Hatch, Aluminum: Properties and Physical Metallurgy, ASM International, Metals Park, Ohio, (1984), pp. 234-235.
53. S. Murali, K. S. Raman and K. S. S. Murthy, “Effect of trace additions (Be, Cr, Mn and Co) on the mechanical properties and fracture toughness of Fe-containing Al-7Si-0.3Mg Alloy”, Cast Metals, Vol. 6, (1994), pp. 189-198.
54. G. Gustafsson, T. Thorvaldsson, and G. L. Dunlop, “The influence of Fe and Cr on the microstructure of cast Al-Si-Mg alloys”, Metall. Trans. A, Vol. 17A, (1986), pp. 45-52.
55. L. F. Mondolfo, Aluminum Alloys: Structure and Properties, London, Butterworth’s, Ltd., (1976), p. 576.
56. Y. H. Tan, S. L. Lee and Y. L. Lin, “Effects of Be and Fe additions on the microstructure and mechanical properties of A357.0 alloys”, Metall. and Mater. Trans. A, Vol. 26A, (1995), pp. 1195-1205.
57. Y. H. Tan, S. L. Lee and Y. L. Lin, “Effects of Be and Fe content on plane strain fracture toughness in A357 alloys”, Metall. Mater. Trans. A, Vol. 26A, (1995), pp.2937-2945.
58. P.S. Warng, Y.J. Liauh, S.L. Lee and J.C. Lin, “Effects of Be Addition on Microstructures and Mechanical Properties of B319.0 Alloys”, Materials Chemistry and Physics, Vol. 53, (1998), pp. 195-202.
59. L. A. Narayanan, F. H. Samuel and J. E. Gruzleski, “Crystallization behavior of iron-containing intermetallic compounds in 319 aluminum alloy”, Metall. and Mater. Trans. A, Vol. 25A, (1994), pp. 1761-1773.
60. Y. Shimizu, Y. Awano and M. Nakamura, Paper presented at 96th casting congress, Milwaukee, WI, (1992), AFS no. 92-135.
61. Yoshihiro Shimizu, Yoji Awano and Motoyuki Nalamura, “Heating in the solid liquid coexisting temperature range for improvement of the impact strength of Al- Si- Cu alloy castings”, 輕金屬, Vol. 40, (1990), pp. 409-415.
62. Y. Shimizu, Y. Awano and M. Nakamura, “New solution treatment for Al-Si-Cu alloy castings at non-equilibrium eutectic melting temperatures”, 輕金屬, Vol. 38, (1988), pp. 202-207.
63. P.S. Wang, S.L. Lee, J.C. Lin and M.T. Jhan, “Effects of solution temperature on mechanical properties of 319.0 aluminum casting alloys containing trace beryllium”, J. Materials Research, Vol. 15, (2000), pp. 2027-2035.
64. L. F. Mondolfo, Aluminum Alloys: Structure and Properties, London, Butterworth’s, Ltd., (1976), pp. 253-266, p. 635.
65. L. Bäckerud, G. Chai, J. Tamminen, Solidification Characteristics of Aluminum alloys, AFS/SKAN ALUMINUM, Vol. 2, (1990), pp. 63-67.
66. L. F. Mondolfo, Aluminum Alloys: Structure and Properties, London, Butterworth’s, Ltd., (1976), p. 283, p. 491, pp. 534-536.
67. C.G. Cordovilla, E. Louis, “Characterization of the microstructure of a commerical Al-Cu alloy (2011) by differntial scanning calorimetry (DSC)”, J. Material science, Vol. 19, (1984), pp. 279-290.
68. Metal Handbook, ASM, Vol. 8, pp. 262, (1980), p. 262.
69. L. F. Mondolfo, Aluminum Alloys: Structure and Properties, London, Butterworth’s, Ltd., (1976), p. 324, pp. 505-506.
70. I.J. Polmear, Light alloys (Metullurgy and Materials Science), Edward Aronld Ltd., (1982), Ch. 2, pp. 15-46.
71. D.L. Robinson and M.S. Huter, “Interrelation of TEM Microstructure, Composition, Tensile Properties, and Corrosion Resistance of Al-Cu-Mg-Mn Alloys”, Metall. Trans., Vol. 3, (1972), pp. 1147-1155.
72. 劉國雄、林樹均、李勝隆、鄭晃中、葉均蔚編著:工程材料科學,全華圖書,p. 328-332.
73. 劉國雄、葉均蔚:“高強力鋁合金之熱處理-析出硬化”,金屬熱處理, 14期(1985), pp. 1-28.
74. D. Apelian, S. Shivkumar and G. Sigworth, “Fundamental aspects of heat treatment of cast Al-Si-Mg alloys”, AFS Trans., Vol. 89-137, pp. 727-743.
75. J. Gauthier, P. R. Louchez and F. H. Samuel, “Heat treatment of 319.2 aluminum automotive alloy, part 1, solution heat treatment”, AFS Int. Cast Metals, Vol. 8, (1995), pp. 91-106.
76. L. A. Naraynan, F. H. Samuel and J. E. Gruzleski: “Dissolution of iron intermetallics in Al-Si alloys through nonequilibrium heat treatment”, Metall. Mater. Trans. A, Vol. 26A, (1995), pp. 2161-2174.
77. L. E. Marsh and G. Reinenann, AFS Trans., Vol. 87, (1979), pp. 413-422.
78. L.F. Mondolfo, Aluminum Alloys: Structure and properties, Butterwordths, London, 1976, p. 497-504.
79. J.M. Papazian, “Calorimetric Studies of Precipitation and Dissolution Kinetics in Aluminum Alloys 2219 and 7075”, Metall. Trans. A, Vol. 13, (1982), pp. 761-769.
80. M.J. Starink, P.V. Mourik, “Calorimetric Study of Precipitation an Al-Cu Alloy with Silicon Particles”, Metall. Trans. A, Vol. 22A, (1991), pp. 665-674.
81. “Aerospace Material Specification”, AMS 4235A, AMS4236 (1987).
82. K. Hono, N. Sano, S. S. Babu, R. Okano and T. Sakurai, “Atom probe study of the precipitation process in Al-Cu-Mg-Ag alloys”, Acta Metall. Mater., Vol. 41, (1993), pp. 829-838.
83. B.C. Muddle and I.J. Polmear, “The PrecipitateΩphase in Al-Cu-Mg-Ag Alloys”, Acta Metall., Vol. 37, (3), (1989), pp. 777-789.
84. J.M. Silcock, B.Sc., “The Structural Ageing Characteristics of Al-Cu-Mg Alloys with Copper: Magnesium Weight Ratios of 7 : 1 and 2.2 : 1”, J. Inst. Metals. Vol. 89, (1960), pp. 203-210.
85. David Broek, The Practical Use of Fracture Mechanics, Kluwer Academic Publishers, (1988), pp. 48-86.
86. G. R. Irwin, Fracture Dynamics in Fracturing Of Metals, American Society of Metals, Cleveland, (1948).
87. ASM Handbook, Vol. 19, Fatigue and Fracture, Materials Park, Ohio, (1996), p.565-588.
88. H. O. Fuchs and R. I. Stephens, Metal Fatigue in Engineering, April (1980), p. 48-52.
89. Julie A. Bannantine, Jess J. Comer and James L. Handrock, Fundamentals of metal fatigue analysis, Prentice Hall, New Jersey, (1990), pp. 88-114.
90. D. N, Lal, A new mechanistic approach to analysing LEFM fatigue crack growth behaviour of metals and alloys. Eng. Frac. Mech., Vol.47, No.3, (1994), pp.379-401.
91. J. C. Russ, Practical Stereology, Plenum Press, New York, (1986), p. 35-51.
92. ASTM B557-84, Annual Book of ASTM Standards, Vols. 03.01 and 02.02.
93. ASTM E8-89b, Annual Book of ASTM Standards, Vol. 03.01.
94. G. Petzow, and G. Effenberg, Ternary alloys (NY, VCH, New York, 1991), Vol. 4, p. 573.
95. A.K. Jena, A. K. Gupta, and M. C. Chaturvedi, “A differential scanning calorimetric investigation of precipitation kinetics in the Al-1.53 wt% Cu-0.79 wt% Mg alloy”, Acta Metall. Vol. 37, (1989), pp. 885-895.
96. G. Biroli, G. Caglioti, L. Martini and G. Riontino, “Precipitation kinetics of AA4032 and AA6082: A comparison based on DSC and TEM”, Scripta Mater., Vol. 39, no. 2, (1998), pp. 197-203.
97. S. Suresh, T. Christman and Y. Sugimura, “Accelerated aging in cast Al alloy-SiC particulate composites”, Scripta Metall., Vol. 23, (1989), pp. 1599-1602.
98. J. Miyake, G. Ghosh, M.E. Fine, “Design of high-strength, high-conductivity alloys”, MRS Bull. Vol. 21, (1996), pp. 13-18.
99. J.Y. Barghout, G.W. Lorimer, R. Pilkington, and P.B. Prangnell, “Effects of second phase particles, dislocation density and grain boundaries on the electrical conductivity of aluminum alloys”, Mater. Sci. Forum, Vol. 217-222, (1996), pp. 975-980.
100. J. T. Staley, "Microstructure and toughness of high-strength aluminum alloys" Properties Related to Fracture Toughness, ASTMSTP 605, Am. Soc. Testing Mats., (1976), pp.71-l 03.
101. J. H. Mulherin and H. Rosenthal, “Influence of nonequilibrium second-phase particles formed during solidfication upon the mechanical behavior of an aluminum alloy”, Metall. Trans. Vol. 2. Feb (1971), pp. 427-432.
102. T. Kobayashi, “Strength and fracture of aluminum alloys”, Mater. Sci. Eng., Vol. A280, No.1, (2000), pp. 8-16.
103. H. CAI, J.T. Evans and N.T.H. Holroyd, "Unstable crack extension in high strength aluminum alloy", Acta Metal., Vol. 39, No. 10, (1991), pp.2243-2250.
104. Jien-Wei Yeh, "A Study Relating to the Enhancement of Transgranular Fracture by Iron in Al-Zn-Mg Alloys", Scripta Metall., Vol. 20, (1986), pp. 329-334.
105. D.S. Thompson and S.A. Levy: AFML-TR-70-171, Wrigth-Patterson AFB, Ohio, (1970).
106. Manabu Nakai, Takehiko Eto, “New aspects of development of high strength aluminum alloys for aerospace applications”, Mater. Sci. Eng., Vol. A285, (2000), pp. 62–68.
107. Meng L. and Zheng X. L., “Effect of Cerium and impurities on fatigue and fracture properties of 8090 alloy sheets”, Scripta Metall. Mater., Vol. 33, No. 1, (1995), pp.27-31.
108. S. Suresh, A.K. Vasudevan and P.E. Bretz, “Mechanism of slow fatigue crack growth in high strength aluminum alloys: Role of microstructure and environment”, Metall. Trans. Vol. 15A, (2), (1984), pp.369-379.
109. T. Kobayashi, “Strength and fracture of aluminum alloys”, Mater. Sci. Eng., Vol. A280, No. 1, (2000), pp. 8-16.
110. T.S. Srivatsan and D.L.Jr, “Microstructure, tensile properties and fracture behaviour of an Al-Cu-Mg alloy 2124”, J. Mats. Sci., Vol. 28, (1993), pp.3205-3213.
111. M.J.Couper, A.E.Neeson and J.R.Griffiths, “Casting deflects and the fatigue behaviour of an aluminum casting alloy”, Fat. Frac. Eng. Mat. Str., Vol.13, (1990), pp-213-227.
112. A.A. Dabayeh, R. X. Xu, B. P. Du and T.H. Topper, “Fatigue of cast aluminium alloys under constant and variable-amplitude loading”, International Journal of Fatigue Vol. 18, No. 2, Feb., (1996), pp. 95-104.
113. S. Murali, T.S. Arvind, K.S. Raman and K.S.S. Murthy, “Fatigue properties of sand cast, stircast and extruded Al-7Si-0.3Mg alloy with trace additions of Be and Mn”, Materials Trans., JIM, Vol. 38, No. 1, (1997), pp. 28-36.
114. M. Jain, “TEM study of microstructure development during low-cycle fatigue of an overaged Al-Mg-Si alloy”, J. Mater. Sci., Vol.27, (1992), pp.399-407.
115. H. Egashira, M. Niinomi, T. Kobayashi and S. Kohmura, “Effects of metallurgical factors on the fatigue crack propagation characteristics in high-purtity Al-Si casting alloys”, J. Japan Inst. Light Metals, Vol. 39, No.12, (1989), pp.878-885.
116. Y. H. Tan, S. L. Lee and H.Y. Wu, “Effects of beryllium on fatigue crack propagation of A357 alloys containing iron”, Int. J. Fatigue, Vol. 18, No. 2, (1996), pp.137-147.
117. ASTM E399-90, Annual Book of ASTM Standards, Vol. 03.01.
118. ASTM E647-88a, Annual Book of ASTM Standards, Vol. 03.01.
119. R. F. Smith and P. Doig, “Crack length measurement by compliance in fracture toughness testing”, Experiments Mechanics, June (1986), pp. 122-127.