| 研究生: |
周世欽 Shi-Qin Zhou |
|---|---|
| 論文名稱: |
透明導電膜功函數對矽異質接面太陽能電池之影響 Effect of Transparent Conductive Oxide Work Function on Silicon Heterojunction Solar Cell |
| 指導教授: |
陳昇暉
Sheng-Hui Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 功函數 、異質接面太陽能電池 、氧化銦錫 |
| 外文關鍵詞: | work function, ITO, heterojunction solar cell |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗分為兩大方向來討論,其一是透明導電膜ITO單層膜的分析,第二是ITO應用於矽異質接面太陽能電池探討。ITO單層膜主要分兩大主軸,優化光電特性以及提高功函數;優化光電特性部分,我們利用改變製程功率以及溫度,得到ITO最佳的電阻率為1.21x10-4 (Ω-cm),在波長400~1100 nm下最佳的平均穿透率為82.97%;也利用不同製程環境得到功函數4.36~5.20 eV的分佈範圍。
電池元件討論部分將ITO分為兩層鍍製,和P層接觸的下層ITO,討論功函數對電池的影響;上層ITO為傳導層,具備良好的光電特性。根據本實驗結果,當功函數越高,電池的開路電壓明顯提高,元件效率也提升。當ITO功函數為4.36 eV,光電轉換效率為3.8%;若將功函數提升為5.20 eV可得最佳轉換效率8.3%。
The experiment discussed in two parts, one of which was analysis single layer of transparent conductive oxide ITO, and the other was discussion ITO applied in heterojunction solar cells. In the research, we optimized ITO electrical and optical properties with sputtering different deposition parameters. In our study, the lowest value of resistivity was 1.21x10-4 (Ω-cm) and the best average optical transmittance was 82.97% in the range of 400~1100 nm. Besides, we can control ITO work function range from 4.36 eV to 5.20 eV.
In this study, we deposited two layers different properties ITO thin films on silicon heterojuction solar cell. ITO film that contacted with amorphous P-type silicon was used to discuss the relation between work function and cell efficiency. The upper ITO was conductive layer, and it has excellent electrical and optical properties. According to the results, the efficiency and open circuit voltage of cells were better when sputtering ITO with higher work function. ITO films with work function 4.36 eV, the photoelectric conversion efficiency was 3.8%. The best conversion efficiency was 8.3 % with highest ITO work function 5.20 eV.
[1]J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. P. Guisado, M. A. M. Prats, et al., "Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey," Industrial Electronics, IEEE Transactions on, vol. 53, pp. 1002-1016, 2006.
[2]莊嘉琛, "太陽能工程-太陽能電池篇", 全華科技圖書股份有限公司, 民國九十二年三月.
[3]工研院能資所吳志明, "Nanotechnology in energy applications."pp.35, 2005
[4]M. Iwamoto, K. Minami, T. Yamaoki, "Photovoltaic device", United States Patent, No.5066340, 1991.
[5]Y. T. A. Ogane, D. Fujishima, A. Yano, H. Kanno, T. Kinoshita, H. Sakata, M. Taguchi, H. Inoue and E. Maruyama, "Recent progress of HIT solar cells heading for the higher conversion efficiencies," 21th International Photovoltaic Science and Engineering Conference, Fukuoka, 2011.
[6]B. Jagannathan, W. A. Anderson, and J. Coleman, "Amorphous silicon p-type crystalline silicon heterojunction solar cells," Solar Energy Materials and Solar Cells, vol. 46, pp. 289-310, 1997.
[7]D. L. Staebler and C. R. Wronski, "Reversible conductivity changes in discharge-produced amorphous Si," Applied Physics Letters, vol. 31, pp. 292-294, 1977.
[8]W. A. Cady and M. Varadarajan, "RCA Clean Replacement," Journal of The Electrochemical Society, vol. 143, pp. 2064-2067, 1996.
[9]T. D. Moustakas, "Sputtered hydrogenated amorphous silicon," Journal of Electronic Materials, vol. 8, pp. 391-435, 1979.
[10]Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, et al., "Twenty-two percent efficiency HIT solar cell," Solar Energy Materials and Solar Cells, vol. 93, pp. 670-673, 2009.
[11]J. Müller, B. Rech, J. Springer, and M. Vanecek, "TCO and light trapping in silicon thin film solar cells," Solar Energy, vol. 77, pp. 917-930, 2004.
[12]L. Zhao, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, "Design optimization of bifacial HIT solar cells on p-type silicon substrates by simulation," Solar Energy Materials and Solar Cells, vol. 92, pp. 673-681, 2008.
[13]李正中, "薄膜光學與鍍膜技術", 藝軒出版社, 2009.
[14]K. Badeker, "Concerning the electricity conductibility and the thermoelectric energy of several heavy metal bonds, " Ann. Phys., vol.22, pp. 749, 1907.
[15]曲喜新,楊邦朝,姜節儉,張懷武, "電子薄膜材料", 北京科學出版社出版, 1996.
[16]M. Quaas, C. Eggs, and H. Wulff, "Structural studies of ITO thin films with the Rietveld method," Thin Solid Films, vol. 332, pp. 277-281, 1998.
[17]A. J. Steckl and G. Mohammed, "The effect of ambient atmosphere in the annealing of indium tin oxide films," Journal of Applied Physics, vol. 51, pp. 3890-3895, 1980.
[18]L. Gupta, A. Mansingh, and P. K. Srivastava, "Band gap narrowing and the band structure of tin-doped indium oxide films," Thin Solid Films, vol. 176, pp. 33-44, 1989.
[19]M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, and J. Stollenwerk, "Dependence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films," Thin Solid Films, vol. 326, pp. 72-77,1998.
[20]E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, "Unusually Low Surface-Recombination Velocity on Silicon and Germanium Surfaces," Physical Review Letters, vol. 57, pp. 249-252, 1986.
[21]林麗娟, "X光繞射原理及其應用",工業材料,第86期, pp. 100-109, 1997.
[22]張國慶,"佈植矽離子與佈植氮離子於氧化鋅膜之特性分析及氧化鋅膜與金屬的歐姆接觸研究", 國立中央大學碩士論, 2004.
[23]J.-H. Lee, "Effects of substrate temperature on electrical and optical properties ITO films deposited by r.f. magnetron sputtering," Journal of Electroceramics, vol. 23, pp. 554-558, 2009.
[24]G. Haacke, "New figure of merit for transparent conductors," Journal of Applied Physics, vol. 47, pp. 4086-4089, 1976.
[25]楊明輝, "透明導電膜", 藝軒出版社, 2006.
[26]AMPS-1D. Available: http://www.ampsmodeling.org/default.htm.
[27]R. L. Y. Sah, R. N. Noyce, and W. Shockley, "Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics," Proceedings of the IRE, vol. 45, pp. 1228-1243, 1957.
[28]N. Hernández-Como and A. Morales-Acevedo, "Simulation of hetero-junction silicon solar cells with AMPS-1D," Solar Energy Materials and Solar Cells, vol. 94, pp. 62-67, 2010.
[29]M. Rahmouni, A. Datta, P. Chatterjee, J. Damon-Lacoste, C. Ballif, and P. R. I. Cabarrocas, "Carrier transport and sensitivity issues in heterojunction with intrinsic thin layer solar cells on N-type crystalline silicon: A computer simulation study," Journal of Applied Physics, vol. 107, 054521, 2010.
[30]V. A. Dao, J. Heo, H. Choi, Y. Kim, S. Park, S. Jung, et al., "Simulation and study of the influence of the buffer intrinsic layer, back-surface field, densities of interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin-layer (HIT) solar cell," Solar Energy, vol. 84, pp. 777-783, 2010.
[31]E. Centurioni and D. Iencinella, "Role of front contact work function on amorphous silicon/crystalline silicon heterojunction solar cell performance," Electron Device Letters, IEEE, vol. 24, pp. 177-179, 2003.
[32]L. Zhao, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, "Role of the work function of transparent conductive oxide on the performance of amorphous/crystalline silicon heterojunction solar cells studied by computer simulation," physica status solidi, vol. 205, pp. 1215-1221, 2008.
[33]A. Chen and K. Zhu, "Computer simulation of a-Si/c-Si heterojunction solar cell with high conversion efficiency," Solar Energy, vol. 86, pp. 393-397, 2012.
[34]太陽輻射光譜圖, Available: http://rredc.nrel.gov/solar/spectra/.
[35]D. A. Neamen, "Semiconductor Physics and Devices: Basic Principles (3rd ed.)," McGraw-Hill Higher Education, pp. 344-348, 2003.
[36]蔡宗典, "超薄ITO 透明導電膜應用在觸控面板之研究" , 國立中央大學碩士論文,2008.