| 研究生: |
莊師豪 Shih-Hao Chuang |
|---|---|
| 論文名稱: |
多成份電漿中靜電孤立波之廣義理論模型 General formulation for electrostatic acoustic solitary wave in multi-component nonthermal plasmas |
| 指導教授: |
郝玲妮
Lin-Ni Hau |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
地球科學學院 - 太空科學研究所 Graduate Institute of Space Science |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 靜電孤立波 、非熱力平衡電漿 、多成份電漿 |
| 外文關鍵詞: | nonthermal plasmas, electrostatic acoustic solitary wave, multi-component plasmas |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多種類帶電粒子普遍存在於太空、天文及實驗室電漿環境中,本研究主要為發展非線性靜電孤立波的廣義模型,模型中各帶電粒子的電性可任意調整,因此可應用在各類型多成份電漿上,如dust-ion-electron及electron-positron-ion等系統,其中假設較冷的帶電粒子(如離子或灰塵粒子)為流體,並以kinetic Vlasov方程式來描述較熱的粒子(如電子)狀態,所使用的速度分佈可為kappa或highly nonthermal函數。模型中之粒子分佈函數為決定波結構的重要因素,並可將結果應用在two-component系統中,如electron-ion plasmas,其中之電子可以有兩種不同的溫度狀態。本文將推導廣義靜電波的頻散關係, Korteweg-de Vries方程式及Sagdeev potential,分析其特性,並應用於滿足不同速度分佈下的粒子組合,分析各類型孤立波的存在條件,並解釋非線性解之特徵。研究顯示,在highly nonthermal的條件下,可得到異常電位解,此結果可用於解釋人造衛星所觀測到之靜電波結構。
Plasma systems consisting of multi-species of charged particles are quite common in space and astrophysical environments as well as in the laboratory. A generalized formulation is developed for nonlinear electrostatic acoustic solitons in multi-component such as dust-ion-electron and electron-positron-ion plasmas with the charge of each species being unspecified. The cold charged particles (e.g., ions or dust particles) are treated as a fluid while the hot components (e.g., electrons) are described by the kinetic Vlasov equation with separate velocity distributions which can be of kappa function or highly nonthermal distributions. The model is applicable for two-component such as electron-ion plasmas with two different temperatures for electrons. The generalized dispersion relation for acoustic waves and the Korteweg-de Vries (KdV) equations as well as the Sagdeev potential are derived for various models with different combinations of velocity distributions. The parameter regimes for the existence of acoustic solitons are analyzed and examples of nonlinear solutions are illustrated. The polarity of electric potential is found to exhibit anomaly for highly nonthermal cases which may explain some of the electrostatic structures observed by the spacecraft in space environments.
Antonova, E. E., and N. O. Ermakova (2008), Kappa distribution functions and the main properties of auroral particle acceleration, Adv. Space Res., 42, 987-991.
Aoutou, K., M. Tribeche, and T. H. Zerguini (2008), Electrostatic solitary structures in dusty plasmas with nonthermal and superthermal electrons, Phys. Plasmas, 15, 3702.
Baker, D. N., and E. C. Stone (1977), Observations of energetic electrons /E no less than about 200 keV/ in the earth''s magnetotail - Plasma sheet and fireball observations, J. Geophys. Res., 82, 1532-1546.
Baluku, T. K., and M. A. Hellberg (2008), Dust acoustic solitons in plasmas with kappa-distributed electrons and/or ions, Phys. Plasmas, 15, 3705.
Berthomier, M., R. Pottelette, M. Malingre, and Y. Khotyaintsev (2000), Electron-acoustic solitons in an electron-beam plasma system, Phys. Plasmas, 7, 2987-2994.
Bostrom, R. (1992), Observations of weak double layers on auroral field lines, IEEE Transactions on Plasma Science, 20, 756-763.
Bostrom, R., G. Gustafsson, B. Holback, G. Holmgren, and H. Koskinen (1988), Characteristics of solitary waves and weak double layers in the magnetospheric plasma, Phys. Rev. Lett., 61, 82-85.
Bounds, S. R., R. F. Pfaff, S. F. Knowlton, F. S. Mozer, M. A. Temerin, and C. A. Kletzing (1999), Solitary potential structures associated with ion and electron beams near 1RE altitude, J. Geophys. Res., 104, 28709-28718.
Cairns, R. A., A. A. Mamum, R. Bingham, R. Boström, R. O. Dendy, C. M. C. Nairn, and P. K. Shukla (1995), Electrostatic solitary structures in non-thermal plasmas, Geophys. Res. Lett., 22, 2709-2712.
Cattell, C., J. Crumley, J. Dombeck, R. Lysak, C. Kletzing, W. K. Peterson, and H. Collin (2001), Polar observations of solitary waves at high and low altitudes and comparison to theory, Adv. Space Res., 28, 1631-1641.
Cattell, C., C. Neiman, J. Dombeck, J. Crumley, J. Wygant, C. A. Kletzing, W. K. Peterson, F. S. Mozer, and M. André (2003), Large amplitude solitary waves in and near the Earth’s magnetosphere, magnetopause and bow shock: Polar and Cluster observations, Nonlinear Processes in Geophysics, 10, 13-26.
Cattell, C. A., J. Dombeck, J. R. Wygant, M. K. Hudson, F. S. Mozer, M. A. Temerin, W. K. Peterson, C. A. Kletzing, C. T. Russell, and R. F. Pfaff (1999), Comparisons of Polar satellite observations of solitary wave velocities in the plasma sheet boundary and the high altitude cusp to those in the auroral zone, Geophys. Res. Lett., 26, 425-428.
Chase, L. M., R. E. McGuire, R. P. Lin, K. A. Anderson, J. E. McCoy, and E. W. Hones (1974), Plasma and energetic particles in the magnetotail at 60 earth radii, J. Geophys. Res., 79, 4779-4785.
Christon, S. P., D. G. Mitchell, D. J. Williams, L. A. Frank, C. Y. Huang, and T. E. Eastman (1988), Energy spectra of plasma sheet ions and electrons from about 50 eV/e to about 1 MeV during plamsa temperature transitions, J. Geophys. Res., 93, 2562-2572.
Chu, J. H., and L. I (1994), Direct observation of Coulomb crystals and liquids in strongly coupled rf dusty plasmas, Phys. Rev. Lett., 72, 4009-4012.
Chuang, S.-H., and L.-N. Hau (2009), The characteristics of ion acoustic solitons in non-Maxwellian plasmas, Phys. Plasmas, 16, 2901.
Chuang, S.-H., and L.-N. Hau (2011), General formulation for acoustic solitons in three-component nonthermal plasmas, Phys. Plasmas, 18, 3702.
Chuang, S.-H., L.-N. Hau, and P. K. Shukla (2010), Characteristics of Hydromagnetic Wases in Dusty Plasmas Chinese Journal of Physics, 48, 460.
Collier, M. R., A. Roberts, and A. Viñas (2008), Acoustic κ-density fluctuation waves in suprathermal κ function fluids, Adv. Space Res., 41, 1704-1709.
Crumley, J. P., C. A. Cattell, R. L. Lysak, and J. P. Dombeck (2001), Studies of ion solitary waves using simulations including hydrogen and oxygen beams, J. Geophys. Res., 106, 6007-6016.
Dombeck, J., C. Cattell, J. Crumley, W. K. Peterson, H. L. Collin, and C. Kletzing (2001), Observed trends in auroral zone ion mode solitary wave structure characteristics using data from Polar, J. Geophys. Res., 106, 19013-19022.
Dovner, P. O., A. I. Eriksson, R. Boström, and B. Holback (1994), Freja multiprobe observations of electrostatic solitary structures, Geophys. Res. Lett., 21, 1827-1830.
Dubouloz, N., R. Pottelette, M. Malingre, and R. A. Treumann (1991), Generation of broadband electrostatic noise by electron acoustic solitons, Geophys. Res. Lett., 18, 155-158.
El-Awady, E. I., S. A. El-Tantawy, W. M. Moslem, and P. K. Shukla (2010), Electron-positron-ion plasma with kappa distribution: Ion acoustic soliton propagation, Physics Letters A, 374, 3216-3219.
El-Shewy, E. K. (2007a), Linear and nonlinear properties of electron-acoustic solitary waves with non-thermal electrons, Chaos Solitons and Fractals, 31, 1020-1023.
El-Shewy, E. K. (2007b), Higher-order solution of an electron-acoustic solitary waves with non-thermal electrons, Chaos Solitons and Fractals, 34, 628.
El-Taibany, W. F., and M. Wadati (2007), Sagdeev potential analysis for positively charged dust grains in nonthermal dusty plasma near Mars, Phys. Plasmas, 14, 3703.
Elwakil, S. A., M. A. Zahran, and E. K. El-Shewy (2007), Nonlinear electron-acoustic solitary waves in a relativistic electron-beam plasma system with non-thermal electrons, Physica Scripta, 75, 803-808.
Elwakil, S. A., E. K. El-Shewy, and H. G. Abdelwahed (2010), Envelope ion-acoustic solitary waves in a plasma with positive-negative ions and nonthermal electrons, Phys. Plasmas, 17, 2301.
Ergun, R. E., et al. (1998), FAST satellite observations of large-amplitude solitary structures, Geophys. Res. Lett., 25, 2041-2044.
Fried, B. D., and R. W. Gould (1961), Longitudinal Ion Oscillations in a Hot Plasma, Phys. Fluids, 4, 139-147.
Fu, W.-Z., and L.-N. Hau (2005), Vlasov-Maxwell equilibrium solutions for Harris sheet magnetic field with Kappa velocity distribution, Phys. Plasmas, 12, 0701.
Futaana, Y., S. Machida, Y. Saito, A. Matsuoka, and H. Hayakawa (2003), Moon-related nonthermal ions observed by Nozomi: Species, sources, and generation mechanisms, J. Geophys. Res., 108, 1025.
Gill, T. S., H. Kaur, and N. S. Saini (2006), Small amplitude electron-acoustic solitary waves in a plasma with nonthermal electrons, Chaos Solitons and Fractals, 30, 1020-1024.
Goertz, C. K. (1989), Dusty plasmas in the solar system, Reviews of Geophysics, 27, 271-292.
Goldman, M. V., M. M. Oppenheim, and D. L. Newman (1999), Nonlinear two-stream instabilities as an explanation for auroral bipolar wave structures, Geophys. Res. Lett., 26, 1821-1824.
Goldreich, P., and W. H. Julian (1969), Pulsar Electrodynamics, Astrophys. J., 157, 869.
Hapgood, M., C. Perry, J. Davies, and M. Denton (2011), The role of suprathermal particle measurements in CrossScale studies of collisionless plasma processes, Planetary and Space Science, 59, 618-629.
Hau, L.-N., and W.-Z. Fu (2007), Mathematical and physical aspects of Kappa velocity distribution, Phys. Plasmas, 14, 0702.
Havnes, O., J. Trøim, T. Blix, W. Mortensen, L. I. Næsheim, E. Thrane, and T. Tønnesen (1996), First detection of charged dust particles in the Earth''s mesosphere, J. Geophys. Res., 101, 10839-10848.
Hobara, Y., et al. (2008), Cluster observations of electrostatic solitary waves near the Earth''s bow shock, J. Geophys. Res., 113, 05211.
Horanyi, M., and D. A. Mendis (1986), The effects of electrostatic charging on the dust distribution at Halley''s Comet, Astrophys. J., 307, 800-807.
Jones, W. D., A. Lee, S. M. Gleman, and H. J. Doucet (1975), Propagation of ion-acoustic waves in a two-electron-temperature plasma, Phys. Rev. Lett., 35, 1349-1352.
Kakad, A. P., S. V. Singh, R. V. Reddy, G. S. Lakhina, and S. G. Tagare (2009), Electron acoustic solitary waves in the Earth’s magnetotail region, Adv. Space Res., 43, 1945-1949.
Kjus, S. H., H. L. Pécseli, B. Lybekk, J. Holtet, J. Trulsen, H. Lühr, and A. Eriksson (1998), Statistics of the lower hybrid wave cavities detected by the FREJA satellite, J. Geophys. Res., 103, 26633-26648.
Kletzing, C. A., J. D. Scudder, E. E. Dors, and C. Curto (2003), Auroral source region: Plasma properties of the high-latitude plasma sheet, J. Geophys. Res., 108, 1360.
Klimas, A. J., and R. J. Fitzenreiter (1988), On the persistence of unstable bump-on-tail electron velocity distributions in the earth''s foreshock, J. Geophys. Res., 93, 9628-9648.
Kojima, H., H. Matsumoto, and Y. Omura (1999), Electrostatic solitary waves observed in the geomagnetic tail and other regions, Adv. Space Res., 23, 1689-1697.
Lacombe, C., C. Salem, A. Mangeney, D. Hubert, C. Perche, J.-L. Bougeret, P. J. Kellogg, and J.-M. Bosqued (2002), Evidence for the interplanetary electric potential? WIND observations of electrostatic fluctuations, Annales Geophysicae, 20, 609-618.
Langmayr, D., H. K. Biernat, and N. V. Erkaev (2005), Influence of κ-distributed ions on the two-stream instability, Phys. Plasmas, 12, 2103.
Lotko, W., and C. F. Kennel (1983), Spiky ion acoustic waves in collisionless auroral plasma, J. Geophys. Res., 88, 381-394.
Ludwig, G. O., J. L. Ferreira, and Y. Nakamura (1984), Observation of Ion-Acoustic Rarefaction Solitons in a Multicomponent Plasma with Negative Ions, Phys. Rev. Lett., 52, 275-278.
Lui, A. T. Y. (2006), Parameter extraction of source plasma from observed particle velocity distribution, Geophys. Res. Lett., 33, 21108.
Lundin, R., L. Eliasson, G. Haerendel, M. Boehm, and B. Holback (1994), Large-scale auroral plasma density cavities observed by Freja, Geophys. Res. Lett., 21, 1903-1906.
Mace, R. L., S. Baboolal, R. Bharuthram, and M. A. Hellberg (1991), Arbitrary-amplitude electron-acoustic solitons in a two-electron-component plasma, Journal of Plasma Physics, 45, 323.
Maksimovic, M., V. Pierrard, and J. F. Lemaire (1997), A kinetic model of the solar wind with Kappa distribution functions in the corona, Astronomy and Astrophysics, 324, 725-734.
Maksimovic, M., V. Pierrard, and P. Riley (1997), Ulysses electron distributions fitted with Kappa functions, Geophys. Res. Lett., 24, 1151-1154.
Malkki, A., H. Koskinen, R. Bostrom, and B. Holback (1989), On theories attempting to explain observations of solitary waves and weak double layers in the auroral magnetosphere, Physica Scripta, 39, 787-793.
Malkki, A., A. I. Eriksson, P.-O. Dovner, R. Bostrom, B. Holback, G. Holmgren, and H. E. J. Koskinen (1993), A statistical survey of auroral solitary waves and weak double layers. I - Occurrence and net voltage, J. Geophys. Res., 98, 15521.
Mangeney, A., C. Salem, C. Lacombe, J.-L. Bougeret, C. Perche, R. Manning, P. J. Kellogg, K. Goetz, S. J. Monson, and J.-M. Bosqued (1999), WIND observations of coherent electrostatic waves in the solar wind, Annales Geophysicae, 17, 307-320.
Matsumoto, H., X. H. Deng, H. Kojima, and R. R. Anderson (2003), Observation of Electrostatic Solitary Waves associated with reconnection on the dayside magnetopause boundary, Geophys. Res. Lett., 30, 59-51.
Matsumoto, H., L. A. Frank, Y. Omura, H. Kojima, W. R. Paterson, M. Tsutsui, R. R. Anderson, S. Horiyama, S. Kokubun, and T. Yamamoto (1999), Generation mechanism of ESW based on GEOTAIL plasma wave observation, plasma observation and particle simulation, Geophys. Res. Lett., 26, 421-424.
McFadden, J. P., C. W. Carlson, R. E. Ergun, F. S. Mozer, L. Muschietti, I. Roth, and E. Moebius (2003), FAST observations of ion solitary waves, J. Geophys. Res., 108, 8018.
McKenzie, J. F., F. Verheest, T. B. Doyle, and M. A. Hellberg (2005), Note on rarefactive and compressive ion-acoustic solitons in a plasma containing two ion species, Phys. Plasmas, 12, 2305.
Mendis, D. A., and M. Rosenberg (1994), Cosmic Dusty Plasmas, Annual Review of Astronomy and Astrophysics, 32, 419-463.
Michel, F. C. (1982), Theory of pulsar magnetospheres, Reviews of Modern Physics, 54, 1-66.
Misner, C. W., K. S. Thorne, and J. A. Wheeler (1973), Gravitation.
Miyake, T., Y. Omura, and H. Matsumoto (2000), Electrostatic particle simulations of solitary waves in the auroral region, J. Geophys. Res., 105, 23239-23250.
Moslem, W. M., I. Kourakis, P. K. Shukla, and R. Schlickeiser (2007), Nonlinear excitations in electron-positron-ion plasmas in accretion disks of active galactic nuclei, Phys. Plasmas, 14, 2901.
Mozer, F. S., R. Ergun, M. Temerin, C. Cattell, J. Dombeck, and J. Wygant (1997), New Features of Time Domain Electric-Field Structures in the Auroral Acceleration Region, Phys. Rev. Lett., 79, 1281-1284.
Muschietti, L., R. E. Ergun, I. Roth, and C. W. Carlson (1999), Phase-space electron holes along magnetic field lines, Geophys. Res. Lett., 26, 1093-1096.
Nakamura, Y., M. Ooyama, and T. Ogino (1980), Observation of Spherical Ion-Acoustic Solitons, Phys. Rev. Lett., 45, 1565-1569.
Olsson, A., and P. Janhunen (1998), Field-aligned conductance values estimated from Maxwellian and kappa distributions in quiet and disturbed events using Freja electron data, Annales Geophysicae, 16, 298-302.
Omura, Y., H. Matsumoto, T. Miyake, and H. Kojima (1996), Electron beam instabilities as generation mechanism of electrostatic solitary waves in the magnetotail, J. Geophys. Res., 101, 2685-2698.
Omura, Y., H. Kojima, N. Miki, T. Mukai, H. Matsumoto, and R. Anderson (1999), Electrostatic solitary waves carried by diffused electron beams observed by the Geotail spacecraft, J. Geophys. Res., 104, 14627-14638.
Oohara, W., and R. Hatakeyama (2003), Pair-Ion Plasma Generation using Fullerenes, Phys. Rev. Lett., 91, 205005.
Peterson, W. K., R. D. Sharp, E. G. Shelley, R. G. Johnson, and H. Balsiger (1981), Energetic ion composition of the plasma sheet, J. Geophys. Res., 86, 761-767.
Pickett, J., L. Chen, S. Kahler, O. Santolík, D. Gurnett, B. Tsurutani, and A. Balogh (2004), Isolated electrostatic structures observed throughout the Cluster orbit: relationship to magnetic field strength, Annales Geophysicae, 22, 2515-2523.
Rees, M. J. (1971), New Interpretation of Extragalactic Radio Sources, Nature, 229, 312-317.
Rhee, T., C.-M. Ryu, and P. H. Yoon (2006), Self-consistent formation of electron kappa distribution: 2. Further numerical investigation, J. Geophys. Res., 111, 09107.
Rubab, N., and G. Murtaza (2006), Debye length in non-Maxwellian plasmas, Physica Scripta, 74, 145-148.
Sagdeev, R. Z. (1966), Cooperative Phenomena and Shock Waves in Collisionless Plasmas, Reviews of Plasma Physics, 4, 23.
Salahuddin, M., H. Saleem, and M. Saddiq (2002), Ion-acoustic envelope solitons in electron-positron-ion plasmas, Physical Review E, 66, 36407.
Sayed, F., and A. A. Mamun (2007), Dust-acoustic Korteweg-de Vries solitons in an adiabatic hot dusty plasma, Phys. Plasmas, 14, 4502.
Schippers, P., et al. (2008), Multi-instrument analysis of electron populations in Saturn''s magnetosphere, J. Geophys. Res., 113, 07208.
Sharma, S. K., and H. Bailung (2010), Characteristics of large amplitude compressive ion acoustic solitary wave in ion beam multicomponent plasma, Phys. Plasmas, 17, 2301.
Singh, S. V., and G. S. Lakhina (2004), Electron acoustic solitary waves with non-thermal distribution of electrons, Nonlinear Processes in Geophysics, 11, 275-279.
Smets, R., D. Delcourt, and D. Fontaine (1998), Ion and electron distribution functions in the distant magnetotail: modeling of Geotail observations, J. Geophys. Res., 103, 20407-20418.
Surko, C. M., and T. J. Murphy (1990), Use of the positron as a plasma particle, Phys. Fluids B, 2, 1372-1375.
Tagare, S. G., S. V. Singh, R. V. Reddy, and G. S. Lakhina (2004), Electron acoustic solitons in the Earth''s magnetotail, Nonlinear Processes in Geophysics, 11, 215-218.
Temerin, M., K. Cerny, W. Lotko, and F. S. Mozer (1982), Observations of double layers and solitary waves in the auroral plasma, Phys. Rev. Lett., 48, 1175-1179.
Treumann, R. A., C. H. Jaroschek, and M. Scholer (2004), Stationary plasma states far from equilibrium, Phys. Plasmas, 11, 1317-1325.
Vasyliunas, V. M. (1968), A Survey of Low-Energy Electrons in the Evening Sector of the Magnetosphere with OGO 1 and OGO 3, J. Geophys. Res., 73, 2839.
Verheest, F., and S. R. Pillay (2008), Dust-acoustic solitary structures in plasmas with nonthermal electrons and positive dust, Nonlinear Processes in Geophysics, 15, 551-555.
Verheest, F., T. Cattaert, and M. A. Hellberg (2005), Compressive and Rarefactive Electron-Acoustic Solitons and Double Layers in Space Plasmas, Space Sci. Rev., 121, 299-311.
Washimi, H., and T. Taniuti (1966), Propagation of Ion-Acoustic Solitary Waves of Small Amplitude, Phys. Rev. Lett., 17, 996-998.
Watanabe, K., and T. Taniuti (1977), Electron-acoustic mode in a plasma of two-temperature electrons, Journal of the Physical Society of Japan, 43, 1819.
Williams, J. D., L.-J. Chen, W. S. Kurth, D. A. Gurnett, and M. K. Dougherty (2006), Electrostatic solitary structures observed at Saturn, Geophys. Res. Lett., 33, 06103.
Xiao, F., C. Shen, Y. Wang, H. Zheng, and S. Wang (2008), Energetic electron distributions fitted with a relativistic kappa-type function at geosynchronous orbit, J. Geophys. Res., 113, 05203.
Xu, R.-L., C. Y. Fan, G. Gloeckler, and D. Hovestadt (1986), The spatial distribution of energetic ions and electrons in the magnetotail, Planetary and Space Science, 34, 125-129.