跳到主要內容

簡易檢索 / 詳目顯示

研究生: 倪咸文
HSIEN-WEN,NI
論文名稱: 氮化硼應用於紫外光發光二極體的特性分析與研製
Analysis and fabrication of the ultraviolet LEDs with boron nitride
指導教授: 賴昆佑
Lai, Kun-Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 46
中文關鍵詞: 紫外光發光二極體
外文關鍵詞: the ultraviolet LEDs
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 紫外光LED的短波長具備高能量,可淨化水和空氣,在醫療衛生的應用上極具價值。然而紫外光LED的發光效率低,尚未普及在市場上。造成發光效率低的其中一個原因為極性量子井,當量子井受到極化效應時,會產生內建電場,產生量子侷限史塔克效應 (Quantum Confined Stark Effect,QCSE),使得電子和電洞分離,降低發光效率。為了解決這問題,我們以立方氮化硼(cubic boron nitride,c-BN)做為紫外光LED的磊晶材料,希望減輕量子井的QCSE,以提升紫外光LED的發光效率。
    本研究利用金屬有機化學氣相沉積 ( Metal-organic Chemical Vapor Deposition,MOCVD) 成長紫外光LED磊晶層,並在AlGaN量子井 (multiple quantum well,MQWs) 下方插入一層c-BN,藉此評估這種磊晶結構的發光效率。完成元件製程後,我們利用電致發光光譜 (Electroluminescence spectra,EL spectra) 以及電壓-電流特性曲線分析元件特性。EL的量測結果含c-BN的LED無法發光。根據一維 drift-diffusion charge control solver (1D DDCC) 模擬的能帶圖,c-BN的能隙太大,阻擋來自n型AlGaN的電子流。為了改善電流注入量子井的效率,我們將c-BN移至n型AlGaN下方,並透過能帶圖確認MQWs/n-AlGaN/c-BN可以提升電子注入量子井的效率,也有機會減緩MQWs裡的QCSE。


    Because of its short wavelength, ultraviolet(UV) LEDs have been applied in various fields including water and air purification, medical hygiene, and more. However, the low luminous efficiency of UV LEDs has hindered their penetration into the market. One of the reasons for the low luminous efficiency is the polarization of AlGaN quantum wells. When the quantum wells are subjected to polarization effects, the induced Quantum Confined Stark Effect (QCSE) creates an internal electric field, leading to the separation of electrons and holes, thus reducing the radiative recombination efficiency. To reduce the QCSE, we adopt cubic boron nitride (c-BN) in the growth of UV LEDs.
    The UV LED, with c-BN inserted under the AlGaN multiple quantum wells (MQWs), was grown by metal-organic chemical vapor deposition (MOCVD) on two-inch sapphire substrates. Characterization of electroluminescence (EL) spectra and current-voltage curves showed that the UV LED with c-BN did not emit light. According to the band diagram simulated by the one-dimensional drift-diffusion charge control solver (1D DDCC), election injection from the n-type AlGaN was blocked by the large bandgap (~6.2eV) of c-BN. In order to increase the injection efficiency, the c-BN layer was moved from MQWs/c-BN/n-AlGaN to MQWs/n-AlGaN/c-BN. In the simulated band diagram of MWQs/n-AlGaN/c-BN, the electron-blocking band offset at c-BN/n-AlGaN is removed, and the band tilting of MQW is also likely to be mitigated.

    摘要 致謝 一、 緒論 1 1-1 紫外光LED的應用 1 1-2 紫外光LED的瓶頸 3 1-3 非極性量子井的技術 4 1-4 非極性量子井優缺點 6 1-5 研究動機 7 二、 實驗原理與步驟 8 2-1實驗結構 8 2-2儀器介紹 10 2-2-1 MOCVD(金屬有機化學氣相沉積) 10 2-2-2 Karlsuss Mask Aligner(MA6曝光機) 10 2-2-3 Inductively Coupled Plasma(感應耦合蝕刻機) 11 2-2-4 E-gun/Thermal Evaporator(電子束/熱阻式蒸鍍機) 12 2-2-5 Furnace(爐管) 13 2-2-6 模擬軟體( DDCC_1D ) 14 2-3 製程步驟 16 2-3-1 樣品清洗 16 2-3-2 旋塗光阻/定義蝕刻區域 16 2-3-3 蝕刻至n-type結構 17 2-3-4 定義p-type電極區域 17 2-3-5 蒸鍍p-type電極 17 2-3-6 爐管退火 18 2-3-7 定義n-type電極區域 18 2-3-8 蒸鍍n-type電極 19 三、 結果與討論 20 3-1 PL光譜 20 3-2量子井在AlN與BN能帶圖 22 3-3 EL光譜 24 3-4 I-V特性曲線 26 3-5 MQW/BN/n-AlGaN能帶圖 28 3-6 MQW/n-AlGaN/AlN能帶圖 30 3-7 MQW/n-AlGaN/BN能帶圖 32 四、結論與未來展望 34 4-1 結論 34 4-2 未來展望 35 五、參考文獻 36

    [1] Inagaki, H., Saito, A., Kaneko, C., Sugiyama, H., Okabayashi, T., & Fujimoto, S. (2021). Rapid inactivation of SARS-CoV-2 variants by continuous and intermittent irradiation with a deep-ultraviolet light-emitting diode (DUV-LED) device. Pathogens, 10(6), 754.
    [2]https://www.doctoruv.com/difference-between-uva-uvb-uvc-uvv
    [3] Bertagna Silva, D., Buttiglieri, G., & Babić, S. (2021). State-of-the-art and current challenges for TiO2/UV-LED photocatalytic degradation of emerging organic micropollutants. Environmental science and pollution research, 28(1), 103-120.
    [4]https://genesiswatertech.com/blog-post/4-misconceptions-of-advanced-oxidation-for-wastewater-treatment/
    [5] Kneissl, M. (2016). A brief review of III-nitride UV emitter technologies and their applications. III-Nitride Ultraviolet Emitters: Technology and Applications, 1-25.
    [6] Usman, M., Malik, S., & Munsif, M. (2021). AlGaN‐based ultraviolet light‐emitting diodes: challenges and opportunities. Luminescence, 36(2), 294-305.
    [7] Yu, E. T., Dang, X. Z., Asbeck, P. M., Lau, S. S., & Sullivan, G. J. (1999). Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 17(4), 1742-1749.
    [8]https://www.made-in-china.com/showroom/edytian/product-detailyCUJFSqYXnkx/China-Sapphire-Wafer-R-Plane-M-Plane-Semi-Polar-Non-Polar-off-Cut.html
    [9] Ling, S. C., Wang, T. C., Ko, T. S., Lu, T. C., Kuo, H. C., & Wang, S. C. (2008). Characteristics of ultraviolet nonpolar InGaN/GaN light-emitting diodes using trench epitaxial lateral overgrowth technology. Journal of crystal growth, 310(7-9), 2330-2333.
    [10] Toropov, A. A., Shevchenko, E. A., Shubina, T. V., Jmerik, V. N., Nechaev, D. V., Yagovkina, M. A., ... & Monemar, B. (2013). Suppression of the quantum-confined Stark effect in AlxGa1− xN/AlyGa1− yN corrugated quantum wells. Journal of Applied Physics, 114(12).
    [11] Roumeliotis, G. (2018). III-Nitride Emitters and Converters: Built-in polarization-induced electric fields, built-in potential, and effective doping concentration.

    QR CODE
    :::