| 研究生: |
謝宏顥 Hung-Hao Hsieh |
|---|---|
| 論文名稱: |
量子點陣列嵌入奈米線連接金屬電極之熱二極體 Heat diodes made of quantum dots embedded in nanowires connected to metallic electrodes |
| 指導教授: | 郭明庭 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 熱二極體 、量子點 、奈米線 |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
設計熱流二極體,對熱流的控制應用是非常重要的。然而,整個領域的進展非常有限。特別是,少有實驗的文獻在期刊刊出。雖然理論在相同課題有不少的報導,但是理論文獻所提出的系統及熱整流的機制,對實驗的建構是非常困難的。所以對實驗的幫助還是很有限,而多數的熱整流二極體都採用聲子為主要的熱流載子。本論文考慮電子為熱流整流的主要載子。量子點奈米線因可以大大增加聲子的散射,所以聲子熱流可以被壓抑。利用非均勻的量子點奈米線所形成的階梯能階,我們可以對電子熱流產生效能不錯的熱整流特性。相較其他的文獻所提出的設計,量子點奈米線或許是一個較容易建構的系統。
It is very important to design novel heat diodes in the control of heat currents. So far, few literatures have experimentally reported the heat rectification feature of such devices. Although some theoretical concepts considering phonon carriers to carry heat currents have been proposed to design heat diodes, these proposals are not easy to be implemented by experiments. This thesis considers the structure of quantum dot superlattice nanowires with staircase energy levels and theoretically demonstrates that electron heat currents show a heat rectification behavior. To have a high efficient electron heat diode, phonon heat currents should be fully blocked.
[1] C. Starr, “The Copper Oxide Rectifier”, J. Appl. Phys. 7, 15 (1936).
[2] M. Terraneo, M. Peyrard, and G. Casati, “Controlling the Energy Flow in Nonlinear Lattices: A Model for a Thermal Rectifier”, Phys. Rev. Lett. 88, 094302 (2002).
[3] Baowen Li, L. Wang and G. Casati, “Thermal Diode: Rectification of Heat Flux”, Phys. Rev. Lett. 93, 184301 (2004).
[4] B. Hu, L. Yang and Y. Zhang, “Asymmetric Heat Conduction in Nonlinear Lattices”, Phys. Rev. Lett. 97, 124302 (2006).
[5] G. Casati, C. Mejia-Monasterio and T. Prosen, “Magnetically Induced Thermal Rectification”, Phys. Rev. Lett. 98, 104302 (2007).
[6] N. Zeng and J. S. Wang, “Mechanisms causing thermal rectification: The influence of phonon frequency, asymmetry, and nonlinear interactions”, Phys. Rev. B 78, 024305 (2008).
[7] A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, “Bulk nanostructured thermoelectric materials: current research and future prospects”, Energy Environ Sci. 2, 466 (2009).
[8] M. Terraneo, M. Peyrard, and G. Casati, “Controlling the Energy Flow in Nonlinear Lattices: A Model for a Thermal Rectifier”, Phys. Rev. Lett. 88, 094302 (2002).
[9] B. W. Li, J. H. Lan, and L. Wang, “Interface Thermal Resistance between Dissimilar Anharmonic Lattices”, Phys. Rev. Lett. 95, 104302 (2005).
[10] D. Segal and A. Nitzan, “Spin-Boson Thermal Rectifier”, Phys. Rev. Lett. 94, 034301 (2005).
[11] J. H. Lan and B. W. Li, “Thermal rectifying effect in two-dimensional anharmonic lattices”, Phys. Rev. B 74, 214305 (2006).
[12] G. Casati, C. Mejia-Monasterio, and T. Prosen, “Magnetically Induced Thermal Rectification”, Phys. Rev. Lett. 98, 104302 (2007).
[13] Y. Wang, A. Vallabhaneni, J. N. Hu, B. Qiu, Y. P. Chen, and X. L. Ruan, “Phonon Lateral Confinement Enables Thermal Rectification in Asymmetric Single-Material Nanostructures”, Nano Lett. 14, 592 (2014).
[14] S. Pal and I. K. Puri, “Thermal rectification in a polymer-functionalized single-wall carbon nanotube”, Nanotechnology 25, 8 (2014).
[15] X. Cartoixa, L. Colombo, and R. Rurali, “Thermal Rectification by Design in Telescopic Si Nanowires”, Nano Lett. 15, 8255 (2015).
[16] Y. Li, X. Y. Shen, Z. H. Wu, J. Y. Huang, Y. X. Chen, Y. S. Ni, and J. P. Huang, “Temperature-Dependent Transformation Thermotics: From Switchable Thermal Cloaks to Macroscopic Thermal Diodes”, Phys. Rev. Lett. 115, 195503 (2015).
[17] C. L. Chiu, C. H. Wu, B. W. Huang, C. Y. Chien and C. W. Chang, “Detecting thermal rectification”, AIP ADVANCES 6, 121901 (2016).
[18] C. R. Otey, W. T. Lau, and S. H. Fan, “Thermal Rectification through Vacuum”, Phys. Rev. Lett. 104, 154301 (2010).
[19] D. M.-T. Kuo and Y. C. Chang, “Thermoelectric and thermal rectification properties of quantum dot junctions”, Phys. Rev. B 81, 205321 (2010).
[20] B. Li, L. Wang, and G. Casati, “Negative differential thermal resistance and thermal transistor”, Appl. Phys. Lett. 88, 143501 (2006).
[21] L. Wang and B. Li, “Thermal Logic Gates: Computation with Phonons”, Phys. Rev. Lett. 99, 177208 (2007).
[22] C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, “Solid-State Thermal Rectifier”, Science 314, 1121 (2006).
[23] T. Takeuchi, “Very large thermal rectification in bulk composites consisting partly of icosahedral quasicrystals”, Sci. Technol. Adv. Mater. 15, 064801 (2014).
[24] M. J. Martinez-Perez, A. Fornieri, and F. Giazotto, “Rectification of electronic heat current by a hybrid thermal diode”, Nature Nanotech. 10, 303-307 (2015).
[25] R. Scheibner, M. Konig, D. Reuter, A. D. Wieck, C. Gould, H. Buhmann, and L. W. Molenkamp, “Quantum dot as thermal rectifier”, New J. Phys. 10, 083016 (2008).
[26] K. Ito, K. Nishikawa, H. Iizuka, and H. Toshiyoshi, “Experimental investigation of radiative thermal rectifier using vanadium dioxide”, Appl. Phys. Lett. 105, 253503 (2014).
[27] J. Zhu, K. Hippalgaonkar, S. Shen, K. V. Wang, Y. Abate, S. Lee, J. Q. Wu, X. B. Yin, A. Majumdar, and X. Zhang, “Temperature-Gated Thermal Rectifier for Active Heat Flow Control”, Nano Lett. 14, 4867-4872 (2014).
[28] Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay and C. Dames, “A photon thermal diode”, Nat. Commu. 5, 5446 (2014).
[29] H. Haug and A. P. Jauho, “Quantum Kinetics in Transport and Optics of Semiconductors”, (Springer, Heidelberg, 1996).
[30] Y. Meir and N. S. Wingreen, “Landauer formula for the current through an interacting electron region”, Phys. Rev. Lett. 68, 2512 (1992).
[31] K. Yamamoto and N. Hatano, “Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime”, Phys. Rev. E 92, 042165 (2015).
[32] R. K. Chen, A. I. Hochbaum, P. Murphy, J. Moore, P. D. Yang, and A. Majumdar, “Thermal Conductance of Thin Silicon Nanowires”, Phys. Rev. Lett. 101, 105501 (2008).
[33] D. L. Nika, E. P. Pokatilov, A. A. Balandin, V. M. Fomin, A. Rastelli, and O. G. Schmidt, “Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering”, Phys. Rev. B 84, 165415 (2011).
[34] Ming Hu and Dimos Poulikakos, “Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity”, Nano Lett. 12, 5487 (2012).
[35] D. M. T. Kuo, C. C. Chen, and Y. C. Chang, “Large enhancement in thermoelectric efficiency of quantum dot junctions due to increase of level degeneracy”, Phys. Rev. B 95, 075432 (2017).
[36] D. M. T. Kuo and Y. C. Chang, “Thermoelectric properties of a quantum dot array connected to metallic electrodes”, Nanotechnology 24, 175403 (2013).
[37] J. H. Lee, J. W. Lim, and P. D. Yang, “Ballistic Phonon Transport in Holey Silicon”, Nano Lett 15, 3273 (2015).
[38] T. K. Hsiao, H. K. Chang, S. C. Liou, M. W. Chu, S. C. Lee and C. W. Chang, “Observation of room-temperature ballistic thermal conduction persisting over 8.3 µm in SiGe nanowires”, Nature nanotech 8, 534 (2013).
[39] T. Zhu and E. Ertekin, “Phonon transport on two-dimensional graphene/boron nitride superlattices”, Phys. Rev. B 90, 195209 (2014).
[40] T. Zhu and E. Ertekin, “Generalized Debye-Peierls/Allen-Feldman model for the lattice thermal conductivity of low-dimensional and disordered materials”, Phys. Rev. B 93, 155414 (2016).
[41] T. Zhu and E. Ertekin, “Phonons, Localization, and Thermal Conductivity of Diamond Nanothreads and Amorphous Graphene”, Nano Lett. 16, 4763 (2016).
[42] E. B. Ramayya, L. N. Maurer, A. H. Davoody and I. Knezevic, “Thermoelectric properties of ultrathin silicon nanowires”, Phys. Rev. B 86, 115328 (2012).