跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林志宇
Zhi-Yu Lin
論文名稱: 石墨烯粉末球磨製程應用於可撓式熱介面材料與高功率電子元件熱管理
Highly Stretchable Thermal Interface Materials via Ball Milled Graphene Platelets and Application to Thermal Management of High Power Electronic Devices
指導教授: 傅尹坤
Yiin-Kuen Fuh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 53
中文關鍵詞: 球磨處理熱介面材料網印技術聚二甲基矽氧烷熱管理
外文關鍵詞: ball-milled, TIM, Screen Printing, Polydimethylsiloxane (PDMS), Thermal management
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱介面材料 (TIMs) 是大多數電力電子系統的關鍵部件,熱由高功率電子元件產生,必須轉移到一個散熱器,並最終消散到周圍環境,在這項工作中使用一種通用且無溶劑的球磨方法,減少市面販售之石墨烯粉末(Exfoliated Graphite Nanoplatelets,EGN)的平均粒徑,產生高品質之球磨石墨烯粉末(Ball-Milled Exfoliated Graphite Nanoplatelets,BMEGN) ,並利用網印技術,將不同球磨時間石墨烯粉末之嵌入聚二甲基矽氧烷(PDMS),製成熱介面材料。
    比較添加 BMEGN 對TIMs熱傳導係數的影響,從0到48小時球磨時間填料的熱傳導係數進行觀察,平面方向熱傳導係數由12.8 W/mK增加至16.9W/mK,垂直方向熱傳導係數由0.75 W/mK增加至1.19 W/mK,此外;熱介面材料具有突出機械性能以及熱穩定性,能符合各種指定的環境,熱傳導係數和優異的機械性能的結合可以促進熱管理的應用,本研究針對自製之熱介面材料進行一系列的實驗,首先將不同時間之球磨石墨烯粉末進進行掃描式電子顯微鏡(SEM)以及穿透式電子顯微鏡(TEM)觀察其微觀組織變化,而將熱介面材料進行散熱實測,利用功率為20W之散熱墊片與鋁鰭片,將熱介面材料夾在其中,利用熱電偶觀察其散熱效果,並且實際應用於核研所現有之15kW電力轉換器與鋁散熱鰭片之間進行溫度散熱量測。


    Thermal interface materials (TIMs) is a key component in the majority of power electronic systems. Heat, generated by the semiconductors, has to be transferred to a heat sink and finally dissipated to ambient. In this work, we report a versatile and solvent-free method for the particle size reduced of exfoliated graphite nanoplatelets (EGN) into high-quality ball-milled exfoliated graphite nanoplatelets (BMEGN) by simple solid-state ball-milling, fillers are embedded and thermally cured with Polydimethylsiloxane (PDMS) to make a highly stretchable BMEGN-embedded Polydimethylsiloxane (PDMS)-TIMs (BMEGN/PDMS) with improved thermal conductivity and mechanical properties.
    The thermal conductivity was observed for BMEGN fillers with 0~48h ball mill time and an enhanced in-plane thermal conductivity of 12.8~16.9W/mK and through-plane thermal conductivity of 0.75~1.19 W/mK can be experimentally measured. exhibits synergetic mechanical properties with outstanding flexibility. The combination of thermal conductivity and superior mechanical performance may facilitate the applications in thermal management

    目錄 摘要 I Abstract I 致謝 II 目錄 IV 圖目錄 VI 第一章 緒論 1 1-1前言 1 1-2研究動機與目的 2 1-3論文架構 4 第二章 球磨製備與熱介面材料之結合 5 2-1 網印奈米材料之熱介面材料製備 5 2-2 球磨處理文獻收集…………………………………………………….....7 第三章 研究方法與過程 8 3-1 球磨石墨烯(BMEGN)球磨處理 8 3-2 利用網印技術製備熱介面材料 10 3-3 實驗分析 11 3-3-1 機械性質………………………………………………………….……11 3-3-2 掃描電子顯微鏡 (SEM)……………………………….……………....11 3-3-3 穿透式電子顯微鏡(TEM)……………………………………………..11 3-3-4 粒徑分析…………………………………………………………….…12 3-3-5 熱重分析(TGA) ………………………………………………………..12 3-3-6 X-ray繞射分析(XRD)…………………………………………………12 3-3-7 熱介面材料之熱傳導係數…………………………………………….13 3-3-8 散熱實驗……………………………………………………………….13 第四章 主要發現與結果 14 4-1 機械性質 14 4-2 掃描式電子顯微鏡(SEM) 15 4-3 穿透式電子顯微鏡(TEM) 17 4-4 粒徑分析 19 4-5 熱重分析 (TGA) 20 4-6 X-ray繞射分析(XRD) 22 4-7 長時間球磨掃描式電子顯微鏡(SEM)與平均粒徑 23 4-8 (0至4小時)熱介面材料之熱傳導係數 24 4-9 散熱實驗 26 4-10 長時間性球磨(12至48小時)熱介面材料之熱傳導係數 27 4-11 實際應用於核研所現有之15kW 電力轉換器溫度量測 29 4-12 實際應用於其他電子產品 33 第五章 結論 35 參考文獻 37

    [1] O. Schilling, M. Schäfer, K. Mainka, M. Thoben, F. Sauerland, Power cycling testing and FE modelling focussed on Al wire bond fatigue in high power IGBT modules, Microelectronics Reliability 52 (2012) 2347-2352.
    [2] A. Benmansour, S. Azzopardi, J.C. Martin, E. Woirgard, Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions, Microelectronics Reliability 47 (2007) 1730-1734.
    [3] F. Richardeau, Z. Dou, E. Sarraute, J.M. Blaquiere, D. Flumian, Comparison of IGBT short-circuit failure ‘‘ohmic mode’’: Epoxy molded package versus silicone gel module for new fail-safe and interruptible power converters, Microelectronics Reliability 51 (2011) 1919-1926.
    [4] M. Tounsi, A. Oukaour, B. Tala-Ighil, H. Gualous, B. Boudart, D. Aissani. Characterization of high-voltage IGBT module degradations under PWM power cycling test at high ambient temperature, Microelectronics Reliability 50 (2010) 1810-1814.
    [5] B. Czerny, M. Lederer, B. Nagl, A. Trnka, G. Khatibi, M.Thoben .Lifetime and Reliability of Material Interconnects, Microelectronics Reliability 2012; 52: 2353–7.
    [6] Kanert W. Micro-sectioning approach for quality and reliability assessment of wire bonding interfaces in IGBT modules, Microelectronics Reliability 2012; 52: 2336–41.
    [7] Smith, B., Brunschwiler, T. and Michel, B.: ‘Comparison of Transient and Static Test Methods for Chip-to-Sink Thermal Interface Characterization’, Microelectron J, 2008, 40, (9), pp.1379-1386.
    [8] Kempers, R., Kolodner, P., Lyons, A. and Robinson, A. J.: ‘A High-Precision Apparatus for The Characterization of Thermal Interface Materials’, Rev Sci Instrum. 2009, 80, pp.095111-1-095111-11.
    [9] Geiler U, Schneider-Ramelow M, Reichl H. IEEE Trans Compon Packag Technol
    009; 32: 794–9.
    [10] T.C. Chang, Yiin-Kuen Fuh*, R. Z. Lee, Screen Printed Nanostructured Composites as Thermal Interface Materials for IGBT heat dissipation applications, J. Micro/Nanolith. MEMS MOEMS. 15(4) 52 (2016) 2353-2357.
    [11] Jeon IY, Shin YR, Sohn GJ, Choi HJ, Bae SY, Mahmood J, et al. Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci USA 2012; 109(15):5588–93.
    [12] T. Lhommeau, X. Perpin, C. Martin, R. Meuret, M. Mermet-Guyennet, M. Karama, Thermal fatigue effects on the temperature distribution inside IGBT modules for zone engine aeronautical applications, Microelectronics Reliability 47 (2007) 1779-1783.
    [13] X. Perpiñà, J.F. Serviere, X. Jordà, A. Fauquet, S. Hidalgo, J. Urresti-Ibañez a, J. Rebollo, M. Mermet-Guyennet, IGBT module failure analysis in railway applications, Microelectronics Reliability 48 (2008) 1427-1431.
    [14] T.Y. Hung, S.Y. Chiang, C.Y. Chou, C.C. Chiu, K.N. Chiang, Thermal design and transient analysis of insulated gate bipolar transistors of power module, Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems 10.1109/ITHERM.2010.5501341 (2010) 1-5.
    [15] Li LH, Chen Y, Behan G, Zhang H, Petravic M, Glushenkov AM. Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling. J Mater Chem 2011; 21(32):11862–6.
    [16] Li LH, Chen Y, Cheng BM, Lin MY, Chou SL, Peng YC. Photoluminescence of boron nitride nanosheets exfoliated by ball milling. Appl Phys Lett 2012; 100(26). 261108–4.
    [17] Shen T, Ge W, Wang K, Quan M, Wang J, Wei W, et al. Structural disorder and phase transformation in graphite produced by ball milling. Nanostruct Mater 1996; 7(4):393–9.
    [18] Chen Y, Fitz Gerald JD, Chadderton LT, Chaffron L. Nanoporous carbon produced by ball milling. Appl Phys Lett 1999;74(19):2782–4.
    [19] Jeon I-Y, Choi H-J, Jung S-M, Seo J-M, Kim M-J, Dai L, et al. Large-scale
    production of edge-selectively functionalized graphene nanoplatelets via ball
    milling and their use as metal-free electrocatalysts for oxygen reduction reaction.
    Jam Chem Soc 2012;135(4):1386–93.
    [20] Chen Y, Fitz Gerald JD, Chadderton LT, Chaffron L. Nanoporous carbon produced by ball milling. Appl Phys Lett 1999; 74(19):2782–4.
    [21] Y. Kozak, B. Abramzon, Gennady Ziskind. Experimental and numerical investigation of a hybrid PCM–air heat sink, Applied Thermal Engineering 59 (2013) 142-152.
    [22] Zhang, H.; Xu, C.; Xiao, W.; Ameyama, K.; Ma, C. Enhanced mechanical
    properties of Al5083 alloy with graphene nanoplates prepared by ball milling
    and hot extrusion. Mater. Sci. Eng. A 2016, 658, 8–15.
    [23] Yoon, H.; Yamashita, M.; Ata, S.; Futaba, D.N.; Yamada, T.; Hata, K. Controlling exfoliation in order to minimize damage during dispersion of long SWCNTs for advanced composites.

    QR CODE
    :::