跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡炫儒
Hsuan-ju Tsai
論文名稱: W頻段光子發射器中射頻前端電路之研製
Design and Analysis of Integrated Photonic Transmitter with Wide Optical-to-Electrical Bandwidth for Wireless-Over-Fiber Applications
指導教授: 丘增杰
Tsen-chieh Chiu
陳念偉
Nan-wei Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 81
中文關鍵詞: 光二極體光電檢測器前端電路W頻段
外文關鍵詞: photodetector, front-end, W-band, photonic diode
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研製可應用於無線光纖(wireless-over-fiber)通信系統中光子積體傳輸器(integrated photonic transmitter)之射頻前端電路。此前端電路係包含三部份,其一乃利用偶極天線作為號角天線之饋入結構,其餘依序為寬頻帶通濾波器及寬頻帶止濾波器。該饋入結構與既有文獻相較下,不需於導波管結構進行任何機械加工或使用磅線(bond wire)即可於毫米波頻帶下達到低介入損耗(insertion loss)之高效率轉換,於製程中不僅成本要求較低且易於積體化;另外,基於簡單的開路及短路殘段觀念,寬頻帶通濾波器及帶止濾波器可輕易於毫米波頻段實現並達到相當良好的特性;最後,藉由等效電路描述,該光電轉換響應可直接藉由電路軟體求解並獲得精準數據。
    為有效呈現高速無線資料傳輸之可行性,係將上述前端電路與近彈道單載子光檢測器(near-ballistic uni-travelling-carrier photodiode, NBUTC-PD)設計於W頻段中並進行積體化。由於此光子積體傳輸器具寬頻光電轉換頻寬之特性,於實際量測中,該電路可在高速數位訊號(20Gb/sec)操作下達成無線傳輸功能,此電路於現今固態製程相當容易實現且成本要求低廉,相信此電路在未來寬頻無線光纖通信系統應用中可找到其扮演角色。


    In this thesis, a broadband, integrated photonic transmitter front-end is demonstrated. The front-end essentially comprises a dipole-based antenna feed structure for the transmitting horn antenna, a broadband bandpass filter (BPF), and a broadband bandstop filter (BSF). The proposed dipole-based antenna feed structure does not call for any modifications on the waveguide and bond wires on the structure for insertion loss reduction, which is critical for an easy and low-cost transmitter implementation in the milliliter-wave regime. The BPF and the BSF are easy to realize with simple open- and short- stubs. Furthermore, the equivalent circuit technique is exploited for characterizing optical-to-electrical (O-E) response of the photonic transmitter.
    For experimental demonstration, the proposed front-end is integrated with a near-ballistic uni-travelling-carrier photodiode (NBUTC-PD) through flip-chip bonding for realization of a W-band integrated photonic transmitter poised for high-speed wireless data transmission. Owing to wide optical-to-electrical bandwidth of the NBUTC-PD integrated with the proposed front-end, the demonstrated photonic transmitter is of a high data rate up to 20 Gb/s and expected to find applications in the broadband wireless-over-fiber systems.

    摘要 i Abstract ii 致謝 iii 圖目錄 viii 表目錄 xiii 第一章 序論 1 1.1 研究動機與目的 1 1.1.1 RoF系統 1 a. 低損耗特性 3 b. 超寬頻特性 4 c. 安裝簡單 4 d. 低功率消耗 4 1.2 近彈道單載子光電檢測器於RoF系統之應用 6 1.3 近彈道單載子光電檢測器於RoF系統之應用 6 1.4 論文概述 9 第二章 光檢測器於無線傳輸之應用 10 2.1 天線之選擇 10 2.2 平面電路至導波管轉接之設計準則 12 2.1.1 利用電場探針之導波管轉接設計 13 2.1.2 利用電場緩匹配之導波管轉接設計 16 2.1.3 相關文獻-利用準八木宇田天線之導波管轉接設計 18 2.1.4 槽線傳輸線至導波管轉接設計 19 2.1.5 基板於導波管中之波阻抗變化與不連續效應 21 2.1.6 共平面波導至導波管轉接器 27 2.2 光電轉換之等效模型 31 2.3 光電轉換響應之整體效應 33 2.4 光電量測系統架設與量測 35 2.5 光電轉換之無線傳輸 37 2.6 中頻調變響應之量測 38 第三章 寬頻中頻調變響應之設計 40 3.1 槽線形式墊片與光檢測器主動區的結合 40 3.2 近彈道單載子之光電轉換等效模型 42 3.3 調變頻寬改善之方法 45 3.3 槽線形式之射頻扼流器設計 47 3.4 射頻扼流器實際製作 53 3.5 槽線形式的W頻段帶通濾波器以及天線端之串接 57 3.6 積體化光電檢測器實際串接 62 3.7 光電轉換之整體響應 64 3.8 中頻調變響應之模擬與量測 68 3.9 光電檢測器應用於無線傳輸 70 3.10 文獻比較 73 第四章 結論與未來工作 75 參考文獻 76

    [1]Hirata, M. Harada, and T. Nagatsuma,“Multi-Gigabit/s
    Wireless Links Using Millimeter-Wave Photonic
    Techniques,”in Tech. Dig. Microwave Photonics 2001,
    pp.77-80, 2001.
    [2]D. Novak, “Fiber Optics in Wireless Applications,” OFC
    2004 Short Course 217, 2004.
    [3]J. J. O’Reilly, P. M. Lane, and M. H. Capstick , “Optical
    Generation and Delivery of Modulated mm-waves for Mobile
    Communications”, in Analogue Optical Fibre
    Communications, B. Wilson, Z. Ghassemlooy, and I.
    Darwazeh, ed. (The Institute of Electrical Engineers,
    London, 1995).
    [4]Y. Koike, “POF Technology for the 21st Century”, in
    Proceedings of the Plastic Optical Fibres (POF)
    Conference, 2001, pp 5 - 8.
    [5]D. K. Mynbaev, and L. L. Scheiner, “Fiber Optic
    Communications Technology,” Prentice Hall, New Jersey,
    2001.
    [6]J. Capmany, B. Ortega, D. Pastor, and S. Sales,
    “Discrete-Time Optical Processing of Microwave Signals,”
    IEEE J. Lightw. Technol., vol. 23, no. 2, 703 - 723,
    (2005)
    [7]G. Maury, A. Hilt, T. Berceli, B. Cabon, and A. Vilcot,
    “Microwave Frequency Conversion Methods by Optical
    Interferometer and Photodiode,” IEEE Trans. Microw.
    Theory Tech., Vol. 45, No. 8, 1481 - 1485, (1997).
    [8]C. Liu, A. Seeds, J. Chadha, P. Stavrinou, G. Parry, M.
    Whitehead, A. Krysa, and J. Roberts, “Bi-Directional
    Transmission of Broadband 5.2 GHz Wireless Signals Over
    Fibre Using a Multiple-Quantum-Well Asymetric Fabry-Perot
    Modulator/Photodetector”, in Proceedings of the Optical
    Fiber Communications (OFC) Conference. 2003, Vol. 2, pp.
    738 – 740.
    [9]Jonathan Wells “Fast Than Fiber: The Future of Multi–Gb/s
    Wireless,” IEEE Microwave Magazine, pp.104–112, May 2009.
    [10]J.-W. Shi, F .-M. Kuo, C.-J. Wu, C. L. Chang, C. Y. Liu,
    C.-Y. Chen, and J.-I. Chyi, “Extremely High Saturation
    Current-Bandwidth Product Performance of a Near-Ballistic
    Uni-Traveling-Carrier Photodiode with a Flip-Chip Bonding
    Structure,” IEEE J. of Quantum Electronics, vol. 46, pp.
    80-86, Jan., 2010.
    [11]F.-M. Kuo, Yu-Tai Li, J.-W. Shi, Shao-Ning Wang, Nan-Wei
    Chen, and Ci-Ling Pan, “Photonic Impulse-Radio Wireless
    Link at W-Band Using a Near-Ballistic Uni-Traveling-
    Carrier Photodiode-Based Photonic Transmitter-Mixer,”
    IEEE Photon. Technol. Lett., vol. 22, pp. 82-84, Jan.,
    2010.
    [12]J.-W. Shi, Y.-S. Wu, and Y.-S. Lin, “Near-ballistic uni-
    traveling-carrier photodiode based V-band optoelectronic
    mixers with internal up-conversion-gain, wide modulation
    bandwidth, and very high operation current performance”,
    IEEE Photon. Technol. Lett., vol. 20, no. 11, pp. 939-
    941, June 2008.
    [13]A Hirata, T Kosugi, N Meisl, T Shibata, T Nagatsuma,
    “High-Directivity Photonic Emitter Using Photodiode
    Module Integrated With HEMT Amplifier for 10-Gbit/s
    Wireless Link”, IEEE Trans. Microw. Theory Tech., vol.
    52, no. 8, pp. 1843-1850. Aug. 2004.
    [14]Akihiko Hirata, Tomofumi Furuta, Hiroshi Ito, and Tadao
    Nagatsuma, “10-Gb/s Millimeter-Wave Signal Generation
    Using Photodiode Bias Modulation”, IEEE J. Lightw.
    Technol., vol. 24, no. 4, pp. 1725, 2006.
    [15]R. B. Waterhouse and D. Novak, Wireless Systems and
    Printed Antennas, John Wiley Sons, Inc., New York, 2007.
    [16]N.-W. Chen, C.-T. Chuang, J.-W. Shi,“A W-band linear
    tapered slot antenna on rectangular-grooved silicon
    substrate,” IEEE Antenna and Wireless Progation Letter,
    vol. 6, pp. 90–92, 2007.
    [17]Hubregt J. Visser, Array and Phased Array Antenna
    Basics, John Wiley & Sons, Ltd., England, 2005.
    [18]C. A. Balanis Advanced Engineering Electromagnetics,
    John Wiley & Sons, Inc., New York,USA, 1989.
    [19]D. M. Pozar: Microwave engineering, 2nd ed., John Wiley
    & Sons, Inc., New York, 1998.
    [20]Y.-C. Leong and S. Weinreb, “Full band waveguide-to-
    microstrip probe transitions,” in IEEE MTT-S Int.
    Microwave Symp. Dig., 1999, pp.1435−1438.
    [21]J. P. Becker, Y. Lee, J. R. East, and L. P. B. Katehi,
    “A finite ground coplanar line-to-silicon micromachined
    waveguide transition,” IEEE Trans. Microw. Theory Tech.,
    vol. 49, no. 10, pp. 1671−1676, Mar. 2001.
    [22]V. S. Mottonen and A. V. Raisanen, “Novel wideband
    coplanar waveguide-to-rectangular waveguide transition,”
    IEEE Trans. Microw. Theory Tech., vol. 52, no.8, pp.
    1836−1842, Aug. 2004.
    [23]Yu Lou, Chi Hou Chan, and Quan Xue, “An In-Line
    Waveguide-to-Microstrip Transition Using Radial-Shaped
    Probe,” IEEE Microwave and Wireless Letters, vol. 18,
    no.5, pp.311-313, May 2008.
    [24]K. P. Ma, Y. Qian, T. Itoh, “Analysis and Applications
    of a New CPW–Slotline Transition,” IEEE Trans. Microw.
    Theory Tech., vol. 47, no.4, pp. 426−432, April 1999.
    [25]G. E. Ponchak and R. N. Simons, ‘‘A New Rectangular
    Waveguide to Coplanar Waveguide Transition,’’ 1990 IEEE
    MTT-S Int. Microwave Symp. Dig., Dallas,TX, vol. 1, pp.
    491—492, May 8—10, 1990.
    [26]T.-H. Lin and R.-B. Wu, “CPW to waveguide transition
    with tapered slotline probe,” IEEE Microwave and Wireless
    Components Letters, vol. 11, no. 7, pp. 314−316, July
    2001.
    [27]V. S. Mottonen, “Wideband coplanar waveguide-to-
    rectangular waveguide transition using fin-line taper,”
    IEEE Microwave and Wireless Components Letters, vol. 15,
    no. 2, pp. 119−121, Feb. 2005.
    [28]N. Kaneda, Y. Qian and T. Itoh, “A novel Yagi–Uda dipole
    array fed by a microstrip-to-CPS transition, ” presented
    at the 1998 Asia-Pacific Microwave Conference (APMC’98),
    Yokohama, Japan, pp. 1413–1416, December 1998.
    [29]H. Yagi, “Beam Transmission of Ultra Short Waves,” Proc.
    IRE, vol. 26, pp. 715–741, June 1928. Also Proc. IEEE,
    vol. 72, no. 5, pp. 634–645, May 1984; Proc. IEEE, vol.
    85, no. 11, pp. 1864–1874, Nov. 1997.
    [30]S. Uda, “Wireless Beam of Short Electric Waves,” J. IEE
    (Japan), pp. 273–282, March 1926, and pp. 1209–1219, Nov.
    1927.
    [31]N. Kaneda, Y. Qian, T. Itoh, “A Broad-Band Microstrip-
    to-Waveguide Transition Using Quasi-Yagi Antenna,” IEEE
    Trans. Microw. Theory Tech., vol. 47, no. 12, Dec. 1999.
    [32]N. Kaneda, Y. Qian, T. Itoh, “Broadband CPW-to-Waveguide
    Transition Using Quasi-Yagi Antenna,” IEEE MTT-S Int.
    Microwave Symp. Dig. vol.2, pp. 617 – 620, June 2000.
    [33]T. H. Ho, L. Fan, and K. Chang, “Experimental
    investigations of CPW–slotline transitions for uniplanar
    microwave integrated circuits,” in IEEE MTT-S Symp.
    Dig., Atlanta, GA, 1993, pp. 877–880.
    [34]Chien-Hsun Ho, Lu Fan and Kai Chang, “A Broad Band
    Uniplanar Hybrid-Ring and Branch-Line Couplers,” IEEE
    Trans. Microw. Theory Tech., vol.41, no.12, pp.2116-2125,
    Dec. 1993.
    [35]Y.-S. Wu, and J.-W. Shi, “Dynamic Analysis of High-Power
    and High-Speed Near-Ballistic Uni-traveling Carrier
    Photodiodes at W-Band, ” IEEE Photon. Technol. Lett.,
    vol. 20, pp. 1160-1162, July, 2008.
    [36]Kenichi Kawasaki, Yoshiyuki Akiyama, Kenji Komori,
    Masahiro Uno, Hidenori Takeuchi, Tomoari Itagaki,
    Yasufumi Hino, Yoshinobu Kawasaki, Katsuhisa Ito, and Ali
    Hajimiri, “A Millimeter-Wave Intra-Connect Solution,” in
    IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
    Papers, pp. 414-415, Feb. 2010.
    [37]Jri Lee, Yenlin Huang, Yentso Chen, Hsinchia Lu, and
    Chiajung Chang, “A Low-Power Fully Integrated 60GHz
    Transceiver System with OOK Modulation and On-Board
    Antenna Assembly,” in IEEE Int. Solid-State Circuits
    Conf. (ISSCC) Dig. Tech. Papers, pp. 316-317, Feb. 2009.3
    [38]Q. Gu, Zhiwei Xu, Jenwei Ko, and Mau-Chung Frank Chang,
    “Two 10Gb/s/pin Low-Power Interconnect Methods for 3D
    ICs," in IEEE Int. Solid-State Circuits Conf. (ISSCC)
    Dig. Tech. Papers, pp. 448-614, Feb. 2007.
    [39]Noriyuki Miura, Yoshinori Kohama, Yasufumi Sugimori,
    Hiroki Ishikuro, Takayasu Sakurai, and Tadahiro Kuroda,
    “An 11Gb/s inductive-Coupling Link with Burst
    Transmission,” in IEEE Int. Solid-State Circuits Conf.
    (ISSCC) Dig. Tech. Papers, pp. 298-614, Feb. 2008.
    [40]Jri Lee, Yentso Chen, and Yenlin Huang, “A Low-Power
    Low-Cost Fully-Integrated 60-GHz Transceiver System With
    OOK Modulation and On-Board Antenna Assembly,” IEEE J.
    Solid-State Circuits, vol. 45, no. 2, pp. 264–275, Feb.
    2010.
    [41]Mario Weis, Mathieu Huchard, Andreas Stohr, Benoit
    Charbonnier, Sascha Fedderwitz, and Dieter Stefan Jager,
    “60-GHz Photonic Millimeter-Wave Link for Short- to
    Medium-Range Wireless Transmission Up to 12.5 Gb/s,” IEEE
    J. Lightw. Technol., vol. 26, no. 15, pp. 2424–2429, Aug.
    2008.
    [42]H.-J. Song, K. Ajito, A. Hirata, A. Wakatsuki, Y.
    Muramoto, T. Furuta, N. Kukutsu, T. Nagatsuma and Y.
    Kado, “8 Gbit/s wireless data transmission at 250 GHz,”
    IEEE Electronic Lett., vol. 45, no. 22, pp. 1121-1122,
    2009.
    [43]M. Weiss, A. Stohr, M. Weiss, A. Stohr, “27 Gbit/s
    Photonic Wireless 60 GHz Transmission System using 16-QAM
    OFDM,” International Topical Meeting on Microwave
    Photonics (MWP 2009), pp. 1-4, Valencia, Spain, 14-16
    Oct. 2009.
    [44]Timothy Braidwood Gibbon, Xianbin Yu, Romeo Gamatham,
    Neil Guerrero Gonzalez, Roberto Rodes, Jesper Bevensee
    Jensen, Antonio Caballero, and Idelfonso Tafur Monroy,
    “3.125 Gb/s Impulse Radio Ultra-Wideband Photonic
    Generation and Distribution Over a 50 km Fiber With
    Wireless Transmission,” IEEE Microw. Wireless Compon.
    Lett., vol. 20, no. 2, pp. 127−129, Feb. 2010.

    QR CODE
    :::