跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蕭伯庭
Po-Ting Hsiao
論文名稱: 鹿林山大氣汞濃度年際變化分析與可能影響因子探討
指導教授: 許桂榮
Guey-Rong Sheu
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣科學學系
Department of Atmospheric Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 99
中文關鍵詞: 大氣汞聖嬰現象希爾伯特-黃轉換年際變化生質燃燒
外文關鍵詞: Atmospheric mercury, ENSO, Hilbert-Huang transform, Interannual variability, Biomass burning
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 汞(Hg)是一種具有生物累積性的重金屬,能夠經由大氣傳輸影響全球,因此大氣的種種機制都能影響大氣汞傳輸。以往鹿林山大氣汞的研究多著重在周期較短的變化,如日變化、月變化或季變化等,而周期較長的年際變化則較少被研究。因此本研究使用希爾伯特-黃轉換(Hilbert-Huang transfer)來分析2006年到2022年鹿林山大氣汞的年際變化,並分析主要的影響因素。
    2006到2022年鹿林山氣態元素汞(Gaseous elemental mercury, GEM)平均濃度為1.55ng/m3,標準差為0.37 ng/m3,使用Mann-Kandall test及Sen’s slope method計算後發現,這17年間GEM濃度有-0.022ng˙m-3•year-1的遞減趨勢,此趨勢可能與排放源的排放量減少有關。在使用希爾伯特-黃轉換分析GEM資料後,得到12個本質模態函數(Intrinsic Mode Function, IMF),其中IMF1到IMF8是屬於日變化、月變化與年變化的部分,主要是由於日夜轉變、山谷風、不同季節的污染物傳輸差異等所造成。IMF9到IMF11則是屬於年際變化的部分,將其與南方震盪指數(Southern Oscillation Index, SOI)的週期相近的IMF進行分析及比較後發現,在聖嬰現象期間鹿林山的大氣汞濃度較高,反聖嬰期間的大氣汞濃度較低。此外,由於春季中南半島生質燃燒是鹿林山重要的大氣汞來源,因此本研究將美年三月的資料串連起來進行分析,發現其的確有與聖嬰現象相似周期的IMF,並且在總變異量中占了不小比例。
    此外,在分析過每年三月的月平均大氣汞及nino3.4資料後,發現兩者的相關性良好(r=0.48),能夠佐證大氣汞濃度與聖嬰現象的關係。進一步計算聖嬰年與反聖嬰年的氣流距平場後,發現在聖嬰年時氣流會有更多由西南向東北的分量,因此帶來更多春季東南亞生質燃燒產生的的污染物,導致大氣汞濃度的上升;反聖嬰年時則有更多由東向西的分量,帶來更多海洋的氣團使得大氣汞濃度較低。此外,2013及2017這兩年並非聖嬰或反聖嬰年卻也有大氣汞濃度的極值,也是由於氣流方向的不同所導致的。
    另外,本研究也分析了其他因子對春季大氣汞濃度年際變化的影響,包括東南亞的火點數量、溫度、輻射量等因子,而這幾項因子與大氣汞濃度的相關性都不佳,因此推論聖嬰現象是影響大氣汞年際變化的重要因子。


    Mercury (Hg) is a bioaccumulative heavy metal that can affect the world by atmospheric circulation. Therefore, various atmospheric mechanisms can affect the transport of atmospheric mercury. Previous studies at Lulin Atmospheric Background Station (LABS) focused on short-period variabilities such as diurnal variability, monthly variability and annual variability. However, interannual variability have been less studied. Therefore, this study will use Hilbert-Huang transform to analyze the interannual variability at LABS from 2006 to 2022, and find its main influencing factors.
    The average concentration of gaseous elemental mercury (GEM) at LABS from 2006 to 2022 was 1.55ng/m3, and the standard deviation was 0.37 ng/m3. After using the Mann-Kandall test and Sen's slope method, it was found that there were a downward trend of -0.022ng˙m-3·year-1, which may be related to the reduction of emissions from emission sources. After analyzing the GEM data by Hilbert-Huang transform, it was found that 12 intrinsic mode functions (IMF) can be obtained. The IMF1 to IMF8 are diurnal to monthly to annual variabilities, which is mainly caused by diurnal changes, valley winds, differences in pollutant transport in different seasons, etc. IMF9 to IMF11 are part of the interannual variabilities, and we comparing them with the cycle of the Southern Oscillation Index (SOI). After analyzing and comparing similar IMFs, it was found that there is a phase difference between the two in time. Therefore, when the El Nino phenomenon occurs, the atmospheric mercury concentration in Lulin Mountain will be higher, and vice versa. In addition, since biomass burning in spring is an important source of GEM at LABS, this study also connected the data in March for analysis and found that it does have an IMF with a similar period to the El Niño-Southern Oscillation (ENSO), and the total variation is higher accounted for a large proportion.
    After analyzing the monthly average GEM concentrations and nino3.4 data in March every year, it was found that the correlation between the two is good (r=0.48), which can support the relationship between atmospheric mercury concentration and the ENSO. And further print the streamline anomaly of El Niño and La Niña years on March, we found that there was more airmass from the southwest to northeast in El Niño years, which would bring more air pollutants produced by biomass burning in Southeast Asia and caused higher GEM concentrations. In contrast, more airmass from the east in La Niña years, which brought more oceanic and cleaner airmass and made GEM concentrations at LABS lower. In addition, the two years 2013 and 2017 were neural years, but they also had extreme values of GEM concentration, which was also caused by the different air flow directions.
    This study also analyzed the impact of other factors on the interannual variability of GEM in spring, including the number of fire points in Southeast Asia, temperature, radiation and other factors that may affect the GEM concentration. But the correlation is not good, so it can be inferred that the ENSO is an important factor affecting the interannual variability of atmospheric mercury.

    中文摘要...........................................................ii 英文摘要...........................................................iv 致謝..............................................................vi 目錄............................................................ viii 圖目錄..............................................................x 表目錄............................................................xii 第一章 緒論.........................................................1 1.1研究動機......................................................1 1.2研究目的......................................................2 第二章 文獻回顧.....................................................4 2.1汞的基本性質及來源............................................4 2.2東南亞生質燃燒相關研究........................................5 2.3希爾伯特-黃轉換相關研究.......................................8 2.4汞的年際變化相關研究.........................................10 第三章 研究資料及方法..............................................12 3.1 研究資料.....................................................12 3.1.1研究地點.................................................12 3.1.2大氣汞採樣分析...........................................13 3.1.3 NINO3.4指標.............................................14 3.1.4 NCEP再分析場............................................15 3.1.5MODIS衛星火點觀測資料..................................16 3.1.6 其他氣象及污染物參數觀測.................................17 3.2 研究方法.....................................................18 3.2.1 Mann-kandall 檢定法及Sen’s slope method.....................18 3.2.2希爾伯特-黃轉換..........................................20 第四章 結果與討論..................................................25 4.1 2010-2022年GEM觀測資料概況..................................25 4.1.1 GEM資料的分布情況.......................................25 4.1.2 2006-2022鹿林山GEM趨勢..................................27 4.2 EEMD分析結果...............................................29 4.2.1 2010-2022的EEMD分析結果................................29 4.2.2 EEMD分析汞年際變化與ENSO之間的相關...................31 4.2.3每年三月份GEM資料的分析結果.............................34 4.3氣候指標與大氣汞濃度.........................................36 4.3.1三月的大氣汞濃度變化.....................................36 4.3.2 nino3.4、大氣汞濃度與一氧化碳的關係.......................37 4.4聖嬰現象對流線場的變化及大氣汞濃度的影響.....................39 4.4.1 聖嬰現象時的流線場及其對大氣汞濃度的影響.................39 4.4.2反聖嬰現象時的流線場及其對大氣汞濃度的影響...............41 4.4.3 2017年的個案探討.........................................42 4.4.4 2013年個案探討...........................................45 4.5火點分析.....................................................46 4.6 其他氣象指標對大氣汞的年際變化影響...........................47 4.6.1溫度的年際變化的影響.....................................47 4.6.2 輻射量的年際變化的影響...................................48 第五章 結論與展望..................................................74 5.1 結論.........................................................74 5.2 未來展望與建議...............................................76 參考文獻...........................................................77

    Babu, S. R., N.-H. Lin, Changing pattern of springtime biomass burning over
    Peninsular Southeast Asia (PSEA) in recent decades (2023), ESS Open Archive, doi:10.22541/essoar.169111389.92212046/v2
    Chi, K. H., C.-Y. Lin, C.-F. Ou Yang, J.-L. Wang, N.-H. Lin, G.-R. Sheu, C.-T. Lee
    (2010), PCDD/F Measurement at a High-Altitude Station in Central Taiwan: Evaluation of Long-Range Transport of PCDD/Fs during the Southeast Asia Biomass Burning Event, Environmental Science & Technology , 44(8), 2954 – 2960, doi:10.1021/es1000984
    Cole, A., A. Steffen, C. Eckley, J. Narayan, M. Pilote, R. Tordon, J. Graydon, V. St.
    Louis, X. Xu, B. Branfireun (2014), Atmosphere, 5(3), 635 – 668, doi:10.3390/atmos5030635
    Crutzen, P. J. and Andreae, M. O. (1990), Biomass Burning in the Tropics: Impact on
    Atmospheric Chemistry and Biogeochemical Cycles, Science, 250(4988), 1669 – 1678, doi:10.1126/science.250.4988.1669
    Driscoll, C. T., R. P. Mason, H. M. Chan, D. J. Jacob, N. Pirrone (2013), Mercury as a
    Global Pollutant: Sources, Pathways, and Effects, Environmental Science & Technology, 47(10), 4967 – 4983, doi:10.1021/es305071v
    Faïn, X., D. Obrist, A. G. Hallar, I. Mccubbin, T. Rahn (2009), High levels of reactive
    gaseous mercury observed at a high elevation research laboratory in the Rocky Mountains, Atmospheric Chemistry and Physics , 9(20), 8049 - 8060, doi:10.5194/acp-9-8049-2009
    Fasullo, J. T., B. L. Otto‐Bliesner, S. Stevenson (2018), ENSO's Changing Influence
    on Temperature, Precipitation, and Wildfire in a Warming Climate, Geophysical Research Letters , 45(17), 9216 - 9225, doi:10.1029/2018GL079022
    Feng, X., P. Li, X. Fu, X. Wang, H. Zhang, C.-J. Lin (2022), Mercury pollution in
    China: implications on the implementation of the Minamata Convention, Environmental Science: Processes & Impacts, 24(5), 634 – 648, doi:10.1039/D2EM00039C
    Fu, X., N. Marusczak, L.-E. Heimbürger, B. Sauvage, F. Gheusi, E. M. Prestbo, J. E.
    Sonke (2016), Atmospheric mercury speciation dynamics at the high-altitude Pic du Midi Observatory, southern France, Atmospheric Chemistry and Physics , 16(9), 5623 – 5639, doi:10.5194/acp-16-5623-2016
    Fu, X.W., H. Zhang, B. Yu, X. Wang, C.J. Lin, X.B. Feng (2015). Observations of
    atmospheric mercury in China: a critical review, Atmospheric Chemistry and Physics, 15, 9455–9476, doi:10.5194/acp-15-9455-2015
    Fu, Y.-T., M.-C. Yen, N.-H. Lin, H. Bui-Manh, C.-C. Lin, J.-Y. Yu, C.-M. Peng, D.-T.
    Dinh (2023), Footprints of El Niño La Niña on the evolution of particulate matter over subtropical Island Taiwan. npj Clim Atmos Sci, 6, 42, doi:10.1038/s41612-023-00383-6
    Huang, H.-Y. , S.-H. Wang, W. K. M. Lau, S.-Y. S. Wang , A. M. da Silva (2024),
    Impact of regional climate patterns on the biomass burning emissions and transport over Peninsular Southeast Asia, 2000-2019, Atmospheric Research, 297, 107067, doi:10.1016/j.atmosres.2023.107067.
    Huang, H.‐Y., S.‐H. Wang, W.‐X. Huang, N.‐H. Lin, M.‐T. Chuang, A. M. Silva, C.‐
    M. Peng (2020), Influence of Synoptic‐Dynamic Meteorology on the Long‐Range Transport of Indochina Biomass Burning Aerosols, Journal of Geophysical Research: Atmospheres , 125(3), doi:10.1029/2019JD031260
    Huang, N. E., Shen, Z., and Long, S. R.: A new view of nonlinear water waves (1999)
    The Hilbert Spectrum, Annual Review of Fluid Mechanics, 31, 417–457, doi:10.1146/annurev.fluid.31.1.417, 1999.
    Huang, S. and Zhang Y. (2021), Interannual Variability of Air–Sea Exchange of
    Mercury in the Global Ocean: The “Seesaw Effect” in the Equatorial Pacific and Contributions to the Atmosphere, Environmental Science & Technology , 55(10), 7145 - 7156, doi:10.1021/acs.est.1c00691
    Huang, W.‐R., S.‐H. Wang, M.‐C. Yen, N.‐H.Lin, P. Promchote (2016), Interannual
    variation of springtime biomass burning in Indochina: Regional differences, associated atmospheric dynamical changes, and downwind impacts Journal of Geophysical Research: Atmospheres , 121(17), doi: 10.1002/2016JD025286
    Kendall, M. G. (1975). Rank Correlation Methods. 4th edition. London: Charles
    Griffin.
    Koenig, A. M., J. E. Sonke, O. Magand, M. Andrade, I. Moreno, F. Velarde, R.Forno,
    R. Gutierrez, L. Blacutt, P. Laj, P. Ginot, J. Bieser, A. Zahn, F. Slemr, A. Dommergue (2022), Evidence for Interhemispheric Mercury Exchange in the Pacific Ocean Upper Troposphere, Journal of Geophysical Research: Atmospheres , 127(10), doi:10.1029/2021JD036283
    Koenig, A. M., O. Magand, B. Verreyken, J. Brioude, C. Amelynck, N. Schoon, A.
    Colomb, B. F. Araujo, M. Ramonet, M. K. Sha, J.-P. Cammas, J. E. Sonke, A. Dommergue (2023), Mercury in the free troposphere and bidirectional atmosphere–vegetation exchanges – insights from Maïdo mountain observatory in the Southern Hemisphere tropics, Atmospheric Chemistry and Physics, 23(2), 1309–1328, doi: doi.org/10.5194/acp-23-1309-2023
    Krnavek, L., M. S. Landis, A. Colton, D. Kuniyuki (2010), A study of ambient
    mercury in the marine free troposphere, Annual Global Monitoring Conference, Boulder, CO, May 18–19. Available for download at https://www.esrl.noaa.gov/gmd/publications/annual_meetings/2010/abstracts/pg_0028.pdf.
    Kumar, R., M. Naja, S. K. Satheesh, N. Ojha, H. Joshi, T. Sarangi, P. Pant, U. C.
    Dumka, P. Hegde, S. Venkataramani (2011), Influences of the springtime northern Indian biomass burning over the central Himalayas, Journal of Geophysical Research , 116(D19), doi:10.1029/2010JD015509
    Liu, C., X. Fu , H. Zhang , L.Ming , H. Xu , L. Zhang , X. Feng (2019), Sources and
    outflows of atmospheric mercury at Mt. Changbai, northeastern China, Science of The Total Environment, 663, 275-284, doi:10.1016/j.scitotenv.2019.01.332
    Liu, M., J. Lin, Y. Wang, Y. Sun, B. Zheng, J. Shao, Lulu Chen, Y. Zheng, J. Chen, T.-M. Fu, Y. Yan, Q. Zhang, Z. Wu (2018), Spatiotemporal variability of NO2 and PM2.5 over Eastern China: observational and model analyses with a novel statistical method, Atmospheric Chemistry and Physics , 18(17), 12933 – 12952, doi:10.5194/acp-18-12933-2018
    Mann, H. B. (1945), Nonparametric Tests Against Trend, Econometrica, 13(3), 245,
    doi:10.2307/1907187
    McPhaden, M. J., S. E. Zebiak, M. H. Glantz (2006), ENSO as an Integrating Concept
    in Earth Science, Science , 314(5806), 1740 – 1745, doi:10.1126/science.1132588
    Nguyen, L. S. P., G.-R. Sheu, D.-W. Lin, N.-H. Lin (2019), Temporal changes in
    atmospheric mercury concentrations at a background mountain site downwind of the East Asia continent in 2006–2016, Science of The Total Environment , 686, 1049 - 1056, doi: 10.1016/j.scitotenv.2019.05.425
    Nguyen, L. S. P., K. T. Nguyen, S. M. Griffith, G.-R. Sheu, M.-C. Yen, S.-C. Chang,
    N.-H. Lin (2022), Multiscale Temporal Variations of Atmospheric Mercury Distinguished by the Hilbert–Huang Transform Analysis Reveals Multiple El Niño–Southern Oscillation Links, Environmental Science & Technology , 56(2), 1423 - 1432, doi: 10.1021/acs.est.1c03819
    Olson, C. I., H. Fakhraei, C. T. Driscoll (2020), Mercury Emissions, Atmospheric
    Concentrations, and Wet Deposition across the Conterminous United States: Changes over 20 Years of Monitoring, Environmental Science & Technology Letters, 7(6), 376 – 381, doi:10.1021/acs.estlett.0c00185
    Sheu, G.-R., N.-H. Lin, J.-L. Wang, C.-T. Lee, C.-F. Ou Yang, S.-H. Wang (2010),
    Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan, Atmospheric Environment, 44(20), 2393 – 2400, doi:10.1016/j.atmosenv.2010.04.009
    Shi, J., Y. Chen, L. Xu, Y. Hong, M. Li, X. Fan, L. Yin, Y. Chen, C. Yang, G. Chen, T.
    Liu, X. Ji, J. Chen (2022), Measurement report: Atmospheric mercury in a coastal city of Southeast China – inter-annual variations and influencing factors, Atmospheric Chemistry and Physics , 22(17), 11187 – 11202, doi:10.5194/acp-22-11187-2022
    Slemr, F., A. Weigelt, R. Ebinghaus, J. Bieser, C. A. M. Brenninkmeijer, A. Rauthe-
    Schöch, M. Hermann, B. G. Martinsson, P. van Velthoven, H. Bönisch, M. Neumaier, A. Zahn, H. Ziereis (2018), Mercury distribution in the upper troposphere and lowermost stratosphere according to measurements by the IAGOS-CARIBIC observatory: 2014–2016, Atmospheric Chemistry and Physics , 18(16), 12329 – 12343, doi:10.5194/acp-18-12329-2018
    Slemr, F., E.-G. Brunke, R. Ebinghaus, J. Kuss (2011), Worldwide trend of
    atmospheric mercury since 1995, Atmospheric Chemistry and Physics , 11(10), 4779 – 4787, doi: 10.5194/acp-11-4779-2011
    Slemr, F., L. Martin, C. Labuschagne, T. Mkololo, H. Angot, O. Magand, A.
    Dommergue, P. Garat, M. Ramonet, J. Bieser (2020), Atmospheric mercury in the Southern Hemisphere – Part 1: Trend and inter-annual variations in atmospheric mercury at Cape Point, South Africa, in 2007–2017, and on Amsterdam Island in 2012–2017, Atmospheric Chemistry and Physics, 20(13), 7683 – 7692, doi:10.5194/acp-20-7683-2020
    Swartzendruber, P. C., D. A. Jaffe, E. M. Prestbo, P. Weiss-Penzias, N. E. Selin, R.
    Park, D. J. Jacob, S. Strode, L. Jaeglé (2006), Observations of reactive gaseous mercury in the free troposphere at the Mount Bachelor Observatory, Journal of Geophysical Research , 111(D24), doi:10.1029/2006JD007415
    Tang, Y., S. Wang, Q. Wu, K. Liu, L. Wang, S. Li, W. Gao, L. Zhang, H. Zheng, Z. Li,
    J. Hao (2018), Recent decrease trend of atmospheric mercury concentrations in East China: the influence of anthropogenic emissions, Atmospheric Chemistry and Physics , 18(11), 8279 – 8291, doi:10.5194/acp-18-8279-2018
    UN Environment (2019), Global Mercury Assessment 2018, UN Environment
    Programme, Chemical and Health Branch Geneva, Switzerland.
    Vardè, M., C. Barbante, E. Barbaro, F. Becherini, P. Bonasoni, M. Busetto, F.
    Calzolari, G. Cozzi, P. Cristofanelli, F. Dallo, F. D. Blasi, M. Feltracco, J. Gabrieli, A. Gambaro, N. Maffezzoli, E. Morabito, D. Putero, A. Spolaor, W. R. L. Cairns (2022), Characterization of atmospheric total gaseous mercury at a remote high-elevation site (Col Margherita Observatory, 2543 m a.s.l.) in the Italian Alps, Atmospheric Environment , 271, 118917, doi:10.1016/j.atmosenv.2021.118917
    Vecchio, A. and Carbone, V. (2010), Amplitude-frequency fluctuations of the seasonal
    cycle, temperature anomalies, and long-range persistence of climate records, Physical Review E , 82(6), doi:10.1103/PhysRevE.82.066101
    Wang, B., R. Wu, X. Fu (2000), Pacific–East Asian Teleconnection: How Does ENSO
    Affect East Asian Climate?, Journal of Climate , 13(9), 1517 - 1536, doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
    Weigelt, A., R. Ebinghaus, A. J. Manning, R. G. Derwent, P. G. Simmonds, T. G.
    Spain, S. G. Jennings, F. Slemr (2015), Analysis and interpretation of 18 years of mercury observations since 1996 at Mace Head, Ireland, Atmospheric Environment , 100, 85 - 93, doi: 10.1016/j.atmosenv.2014.10.050
    Wu, Z., Feng, J., Qiao, F., and Tan, Z.-M.(2016), Fast multidimensional ensemble
    empirical mode decomposition for the analysis of big spatio-temporal datasets, Philos. T. R. Soc. A, 374, 2065, doi:10.1098/rsta.2015.0197, 2016.
    Wu, Z., Huang, N. E., and Chen, X. (2009), The Multi- Dimensional Ensemble
    Empirical Mode Decomposition Method, Advances in Adaptive Data Analysis, 1, 339–372, doi:10.1142/S1793536909000187
    Yen, M.-C., C.-M. Peng, T.-C. Chen, C.-S. Chen, N.-H. Lin, R.-Y. Tzeng, Y.-A. Lee,
    C.-C. Lin (2013), Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment, Atmospheric Environment , 78, 35 - 50, doi:10.1016/j.atmosenv.2012.11.015
    Yin, S. (2020), Biomass burning spatiotemporal variations over South and Southeast
    Asia, Environment International , 145, 106153, doi:10.1016/j.envint.2020.106153
    Zhang, Y., D. J. Jacob, H. M. Horowitz, L. Chen, H. M. Amos, David P. Krabbenhoft, Franz Slemr, Vincent L. St. Louis, Elsie M. Sunderland (2016), Proceedings of the National Academy of Sciences , 113(3), 526 – 531, doi:10.1073/pnas.1516312113

    QR CODE
    :::