跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃建程
Chien-Cheng Huang
論文名稱: 膠體相圖之理論計算
Theoretical studies of colloidal phase diagrams
指導教授: 賴山強
San-Kiong Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 95
語文別: 中文
論文頁數: 54
中文關鍵詞: 基因演算法密度泛函理論三相共存區膠體相圖
外文關鍵詞: Fundamental measure theory, gas-liquid-solid triangular region, genetic algorithm, colloidal phase diagram
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對膠體系統,進行相圖之理論計算,工作重點著重於對系統相分離之分析,有別於傳統上檢驗相邊界之作法,本文經由視兩分離相為一合成系統,以計算系統在給定熱力學條件下之最低組合自由能,來轉化相圖計算問題為最佳化求相圖區問題。
    為了達此目的,我們放寬了傳統計算相圖上,預設固態結構為FCC之局限,首先藉由定義變數群來變數化固態結構,由此而可決定任意固態結構,接著,本文引進密度泛函理論(Fundamental measure theory),求取各式結構之硬球自由能,並同時引進Rascón et al.之理論近似法,求取任意結構之徑向分布函數,於是,吾人即可透過微擾法(對等效單成份系統而言)或其他方法,而求得任意結構之固態自由能。
    最後,我們以基因演算法整合上述理論,而發展出一套僅需給定初始熱力學條件,便能在基因演算法的平行計算下,自動取得膠體相圖與其對應之固態結構的相圖計算工具。


    We draw attention to a theoretical means to calculate the colloidal phase diagrams. The proposed method has the salient feature of following closely the experimental spirit since the crystalline structures of the solid phase is assumed unknown given the initial physical conditions. With this theoretical model, the phase-diagram domains which comprise of pure phases, two coexisting phases, three or multiple separated phases can all be crosshatched in addition to yielding their respective volume proportions. The methodology proceeds with treating the coexisting phases as a combined system whose composite free energy density is written as the sum average of the free energy density values which are weighed by their re-spective volume proportions. Under this scheme, the thermodynamic phase transition has reduced to an optimization problem searching the lowest value of the composite free energy for all possible combination of phases, including pure liquid, pure solid, gas-liquid, gas-solid, liquid-solid, etc. For the calculation of the solid free energy in any structure which is needed in the thermodynamic perturbation theory, we applied the fundamental measure theory to obtain the solid hard sphere free energy, and used the Rascon et al.''s [C. Rascon, L. Mederos, and G. Navascues, Phys. Rev. E 54, 1261 (1996)] theoretical approach to calculate the pair distribution function. The genetic algorithm was finally employed to integrate all these in-gredients. As illustrations to demonstrate the usefulness of the present theory, we first tested the idea by studying the charged colloidal system and confirmed that our calculations reproduced satisfactorily our previous results [G.F. Wang and S.K. Lai, Phys. Rev. E 70, 051402-1 (2004)]. Then, we extend the calculation to the colloid-polymer mixtures. In the latter study, we unveiled the mystery of gas-liquid-solid triangular region previously advo-cated by Lekkerkerker et al. [H.N.W. Lekkerkerker, W.C.K. Poon, P.N. Pusey, A. Stroobants, and P.B. Warren, Europhys. Lett. 20, 559 (1992) ].

    摘要 i Abstract ii 致謝辭 iii 目錄 v 圖目錄 vi 表目錄 vii 第一章. 導論 1 第二章. 使用理論元素與整合 4 2.1 基因演算法 4 2.2 合成自由能法求相圖 7 2.3 以基因演算法決定最佳結構 9 2.4 Weeks-Chandler-Anderson微擾理論 11 2.5 FMT求固態硬球模型自由能 15 2.5.1 FMT簡介 15 2.5.2 FMT推廣至任意結構之困難及控制誤差之法 22 2.6 以基因演算法求g(r) 26 2.7 各元素之整合 30 第三章.物理系統探討 34 3.1.帶電膠體(Charged colloid) 34 3.1.1 系統介紹 34 3.1.2 固態結構之計算流程 36 3.1.3 結果與探討 37 3.2 混合膠體系統(Colloid-Polymer Mixture) 40 3.2.1 系統介紹 40 3.2.2 固態結構之計算流程 42 3.2.3 結果與探討 43 第四章. 結論 51 參考文獻 53

    [1] G. F. Wang and S. K. Lai, Phys. Rev. E. 70, 051402 (2004).
    [2] D. Gottwald, G. Kahl and C. N. Likos, J. Chem. Phys. 122, 204503 (2005).
    [3] D. Gottwald, “Genetic Algorithms in Condensed Matter Theory”, Fakultät für Physik, TU
    Wien, Ph.D. Thesis, (2005)
    [4] C. Rascon, L. Mederos and G. Navascues, Phys. Rev. E 54,1261-1264 (1996).
    [5] J.A. Niesse and H.R. Mayne, J. Chem. Phys. 105,4700(1996)
    [6] N.A. Besley,R.L. Johnson, A. J. Stace, and J. Uppenbrink, J. Mol. Phys. Structure (Theochem)
    34,75(1995)
    [7] S.K. Lai, P.J. Hsu, K.L. Wu,W.K. Liu and M. Iwamatsu, J. Chem. Phys. 117, 10715(2002)
    [8] D. Liu and J. Nocedal, Math. Program. B 45,503 (1989)
    [9] A. P. Gast, C. K. Hall, and W. B. Russel, J. Colloid Interface Sci. 96, 251 (1983)
    [10] J. M. Victor and J. P. Hansen, J. Phys. (France) Lett. 45, L307 (1984); J. Chem. Soc., Faraday
    Trans. 2 81, 43 (1985)
    [11] S. K. Lai, W. P. Peng, and G. F. Wang, Phys. Rev. E 63, 041511 (2001).
    [12] S. K. Lai and K. L. Wu, Phys. Rev. E. 66, 041403 (2002).
    [13] N. Carnahan and K. Starling, J. Chem. Phys. 53, 600 (1970)
    [14] L. Verlet and J. J. Weis, Phys. Rev. A 5, 939 (1972)
    [15] J. M. Kincaid and J. J. Weis, Mol. Phys. 34, 931 (1977)
    [16] Y. Choi, T. Ree, and F. H. Ree, J. Chem. Phys. 95, 7548 (1991)
    [17] K. R. Hall, J. Chem. Phys. 57, 2252 (1972)
    [18] J. J. Weis, Mol. Phys. 28, 187 (1974)
    [19] B. Groh and B. Mulder, Phys. Rev. E 61, 3811-3822 (2000).
    [20] J. F. Lutsko, Phys. Rev. E. 74, 021121 (2006).
    [21] J. F. Lutsko, Phys. Rev. E. 74, 021603 (2006).
    [22] V. B. Warshavsky and X. Song, Phys. Rev. E. 69, 061113 (2004).
    [23] A. R. Denton, N. W. Ashcroft and W. A. Curtin, Phys. Rev. E 51, 65-73 (1995).
    [24]C. F. Tejero, M. S. Ripoll and A. Perez, Phys. Rev. E 52, 3632-3636 (1995)
    [25] Yumi Choi, Taikyue Ree and Francis H. Ree, J. Chem. Phys. 95, 7548-7561 (1991).
    [26] S. K. Lai and G. F. Wang, Phys. Rev. E 58, 30721998.
    [27] E. J. Verwey and J. G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier,
    Amsterdam, 1948), (a) p. 37; (b) p. 168; (c) p. 171
    [28] H. N. W. Lekkerkerker et al., "Phase Behaviour of colloid-polymer mixtures," Europhys.
    Lett. 20 (6), 559-564 (1992).

    QR CODE
    :::