跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄒守峻
Shou-Jyun Zou
論文名稱: 四維黑洞的全息描述
Holographic Descriptions of Four-dimensional Black Holes
指導教授: 陳江梅
Chiang-Mei Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 100
語文別: 英文
論文頁數: 71
中文關鍵詞: 黑洞全息原理共形場論
外文關鍵詞: black hole, conformal field theory, holographic principle
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們討論黑洞和共形場(CFT)之間的對應關係。根據全息原理,對應的 CFT 至少比黑洞少一個維度,就如同 AdS_D/CFT_{D-1} 的對應關係。我們分析帶電黑洞,Reissner-Nordstrom(RN)和 Kerr-Newman(KN)的情形。我們知道近視界極端 Kerr 黑洞會有(warped)AdS_3幾何結構,類似的結構也出現在當 RN 黑洞放到 5 維空間的近視界極端情形。對於 RN 黑洞的例子,CFT_2的對應描述預計也有電荷參數。我們詳細探討這類形的對應。此外,我們的研究結果還表明,有兩個自然的對應描述 KN 黑洞各自對應旋轉和電荷參數。為確認這個現象,我們討論非極端 KN 黑洞的隱性二維共形對稱性。


    In this thesis, we discuss the correspondence between black holes and conformal field theory. According to the holographic principle, the associated dual CFT should be one-dimension less than the spacetime of black hole, as the usual AdS$_D$/CFT$_{D-1}$ correspondence. We generalize the analysis for the Kerr to the charged black holes, in particular Reissner-Nordstr"{o}m (RN) and Kerr-Newman (KN). Like a (warped) AdS$_3$ geometry appearing in the near horizon of extremal Kerr, the similar structure also shows up in the RN black hole when it is uplifted into 5D. Thus a CFT$_2$ description is expected also for the charge parameter. We explore this sector of the duality in details. Moreover, our results also suggest that there are two natural dual descriptions for the KN black holes corresponding the the associated rotating and charge parameters. To confirm this prospect, we have explored the hidden 2D conformal symmetries in the generic non-extremal KN black hole.

    Chinese Abstract i Abstract ii Acknowledgements iii contents iv 1 Introduction 1 1.1 Holographic Principle . . . . . . . . . . . . . . . . 1 1.2 The Aim of Thesis . . . . . . . . . . . . . . . . . . 5 2 The Kerr/CFT Correspondence 6 2.1 Near Horizon Geometry of Extremal Kerr . . . . . . . .6 2.2 Asymptotic Symmetry Group and Central Charge . . . . .8 2.3 Comparison of CFT and BH entropies . . . . . . . . . 11 2.4 Kerr/CFT in AdS2/CFT1Viewpoint . . . . . . . . . . . 12 2.4.1 2D effective action . . . . . . . . . . . . . . . .12 2.4.2 The solutions . . . . . . . . . . . . . . . . . . .13 2.4.3 The boundary counterterms . . . . . . . . . . . . .13 2.4.4 Asymptotic symmetries and central charge . . . . . 14 2.5 Hidden Conformal Symmetry and Conformal Weight . . . 15 2.5.1 Hidden conformal symmetry . . . . . . . . . . . . .16 2.5.2 Absorption cross section . . . . . . . . . . . . . 18 2.6 Summary and discussion . . . . . . . . . . . . . . . 21 3 The RN/CFT Correspondence 23 3.1 Uplifted RN Black Hole . . . . . . . . . . . . . . .23 3.2 The Central Charge . . . . . . . . . . . . . . . . . 26 3.3 Comparison of CFT and BH Entropies . . . . . . . . . 27 3.4 RN/CFT in AdS2/CFT1Viewpoint . . . . . . . . . . . . 28 3.4.1 2D effective action . . . . . . . . . . . . . . . .28 3.4.2 The solutions . . . . . . . . . . . . . . . . . . .29 3.4.3 The boundary counterterms . . . . . . . . . . . . .29 3.4.4 Asymptotic symmetries and central charge . . . . . 30 3.5 Hidden Conformal Symmetry and Conformal Weight . . . 31 3.5.1 Hidden conformal symmetry . . . . . . . . . . . . .31 3.5.2 Absorption cross section . . . . . . . . . . . . . 33 4 The Duality for Kerr-Newman Black Holes 36 4.1 Dynamics of Charged Scalar Field . . . . . . . . . . 36 4.2 Angular Momentum (J-) Picture . . . . . . . . . . . .38 4.3 Charge (Q-) Picture . . . . . . . . . . . . . . . . .39 4.4 General Linear Combination . . . . . . . . . . . . . 41 5 Conclusions and Future Research 43 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . .43 5.2 Future Research . . . . . . . . . . . . . . . . . . .44 Bibliography 46 A Conformal Field Theory 49 A.1 Symmetries and Correlation Functions . . . . . . . . 49 A.2 Examples for 2D CFT . . . . . . . . . . . . . . . . .51 A.2.1 The Free Boson . . . . . . . . . . . . . . . . . . 51 A.2.2 The Free Fermion . . . . . . . . . . . . . . . . . 52 A.3 Central Charge and Virasoro Algebra . . . . . . . . .54 B Symmetry and Casimir Operator of AdS3 58 C Dimensional Reduction 60 C.1 EM field . . . . . . . . . . . . . . . . . . . . . . 61 C.2 Scalar Curvature . . . . . . . . . . . . . . . . . . 61 D Kerr-Newman in AdS2/CFT1Viewpoint 65 D.1 Boundary counterterms . . . . . . . . . . . . . . . .68 D.2 Asymptotic symmetries . . . . . . . . . . . . . . . .69

    [1] G. ’t Hooft, “A Planar Diagram Theory for Strong Interactions,” Nucl. Phys. B
    72, 461 (1974).
    [2] J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization of
    Asymptotic Symmetries: An Example from Three-Dimensional Gravity,” Commun.
    Math. Phys. 104, 207 (1986).
    [3] J. Polchinski, “Dirichlet Branes and Ramond-Ramond charges,” Phys. Rev. Lett.
    75, 4724 (1995) [arXiv:hep-th/9510017].
    [4] A. Strominger and C. Vafa, “Microscopic origin of the Bekenstein-Hawking en-
    tropy,” Phys. Lett. B 379, 99 (1996) [arXiv:hep-th/9601029].
    [5] C. G. Callan and J. M. Maldacena, “D-brane approach to black hole quantum
    mechanics,” Nucl. Phys. B 472, 591 (1996) [arXiv:hep-th/9602043].
    [6] J. M. Maldacena, “The Large N limit of superconformal field theories and super-
    gravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113
    (1999)] [arXiv:hep-th/9711200].
    [7] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from
    noncritical string theory,” Phys. Lett. B 428, 105 (1998) [arXiv:hep-th/9802109].
    [8] V. P. Frolov and K. S. Thorne, “RENORMALIZED STRESS - ENERGY TEN-
    SOR NEAR THE HORIZON OF A SLOWLY EVOLVING, ROTATING BLACK
    HOLE,” Phys. Rev. D 39, 2125 (1989).
    [9] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253
    (1998) [arXiv:hep-th/9802150].
    10] J. M. Bardeen and G. T. Horowitz, “The Extreme Kerr throat geometry: A
    Vacuum analog of AdS(2) x S**2,” Phys. Rev. D 60, 104030 (1999) [arXiv:hep-
    th/9905099].
    [11] M. Guica, T. Hartman, W. Song and A. Strominger, “The Kerr/CFT Correspon-
    dence,” Phys. Rev. D 80, 124008 (2009) [arXiv:0809.4266 [hep-th]].
    [12] I. Bredberg, T. Hartman, W. Song and A. Strominger, “Black Hole Superradiance
    From Kerr/CFT,” JHEP 1004, 019 (2010) [arXiv:0907.3477 [hep-th]].
    [13] A. Castro, A. Maloney and A. Strominger, “Hidden Conformal Symmetry of the
    Kerr Black Hole,” Phys. Rev. D 82, 024008 (2010) [arXiv:1004.0996 [hep-th]].
    [14] A. Castro and F. Larsen, “Near Extremal Kerr Entropy from AdS(2) Quantum
    Gravity,” JHEP 0912, 037 (2009) [arXiv:0908.1121 [hep-th]].
    [15] M. R. Garousi and A. Ghodsi, “The RN/CFT Correspondence,” Phys. Lett. B
    687, 79 (2010) [arXiv:0902.4387 [hep-th]].
    [16] T. Hartman, K. Murata, T. Nishioka and A. Strominger, “CFT Duals for Extreme
    Black Holes,” JHEP 0904, 019 (2009) [arXiv:0811.4393 [hep-th]].
    [17] J. M. Maldacena and A. Strominger, “Universal low-energy dynamics for rotating
    black holes,” Phys. Rev. D 56, 4975 (1997) [hep-th/9702015].
    [18] C. -M. Chen, Y. -M. Huang and S. -J. Zou, “Holographic Duals of Near-extremal
    Reissner-Nordstrom Black Holes,” JHEP 1003, 123 (2010) [arXiv:1001.2833 [hep-
    th]].
    [19] C. -M. Chen, J. -R. Sun and S. -J. Zou, “The RN/CFT Correspondence Revisited,”
    JHEP 1001, 057 (2010) [arXiv:0910.2076 [hep-th]].
    [20] C. -M. Chen, Y. -M. Huang, J. -R. Sun, M. -F. Wu and S. -J. Zou, “On Holographic
    Dual of the Dyonic Reissner-Nordstrom Black Hole,” Phys. Rev. D 82, 066003
    (2010) [arXiv:1006.4092 [hep-th]].
    [21] T. Hartman and A. Strominger, “Central Charge for AdS(2) Quantum Gravity,”
    JHEP 0904, 026 (2009) [arXiv:0803.3621 [hep-th]].
    [22] A. Castro, D. Grumiller, F. Larsen and R. McNees, “Holographic Description of
    AdS(2) Black Holes,” JHEP 0811, 052 (2008) [arXiv:0809.4264 [hep-th]].
    [23] T. Azeyanagi, N. Ogawa and S. Terashima, “On Non-Chiral Extension of
    Kerr/CFT,” JHEP 1106, 081 (2011) [arXiv:1102.3423 [hep-th]].
    [24] E. Berti, V. Cardoso and M. Casals, “Eigenvalues and eigenfunctions of spin-
    weighted spheroidal harmonics in four and higher dimensions,” Phys. Rev. D 73,
    024013 (2006) [Erratum-ibid. D 73, 109902 (2006)] [arXiv:gr-qc/0511111].
    [25] V. Balasubramanian, J. Parsons and S. F. Ross, “States of a chiral 2d CFT,”
    Class. Quant. Grav. 28, 045004 (2011) [arXiv:1011.1803 [hep-th]].
    [26] M. Guica and A. Strominger, “Microscopic Realization of the Kerr/CFT Corre-
    spondence,” JHEP 1102, 010 (2011) [arXiv:1009.5039 [hep-th]].
    [27] G. Compere, W. Song and A. Virmani, “Microscopics of Extremal Kerr from
    Spinning M5 Branes,” arXiv:1010.0685 [hep-th].
    [28] S. El-Showk and M. Guica, “Kerr/CFT, dipole theories and nonrelativistic CFTs,”
    arXiv:1108.6091 [hep-th].
    [29] K. Goldstein and H. Soltanpanahi, “CFT Duals of Black Rings With Higher
    Derivative Terms,” arXiv:1108.4362 [hep-th].
    [30] C. -M. Chen, Y. -M. Huang, J. -R. Sun, M. -F. Wu and S. -J. Zou, “Twofold
    Hidden Conformal Symmetries of the Kerr-Newman Black Hole,” Phys. Rev. D 82,
    066004 (2010) [arXiv:1006.4097 [hep-th]].
    [31] B. Chen and J. j. Zhang, “General Hidden Conformal Symmetry of 4D Kerr-
    Newman and 5D Kerr Black Holes,” JHEP 1108, 114 (2011) [arXiv:1107.0543
    [hep-th]].
    [32] S. A. Hartnoll, “Lectures on holographic methods for condensed matter physics,”
    Class. Quant. Grav. 26, 224002 (2009) [arXiv:0903.3246 [hep-th]].
    [33] Philippe Francesco, Pierre Mathieu, David Senechal, “Conformal Field Theory”
    Springer; (1996)

    QR CODE
    :::