| 研究生: |
宋侑玲 Yu-Ling Sung |
|---|---|
| 論文名稱: |
重載交通荷重對路面損壞分析模式之建立 Establish Analysis Model for Pavement Due to Heavy Traffic Load |
| 指導教授: |
林志棟
Jyh-Dong Lin 黃偉慶 Wei-Hsing Huang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 210 |
| 中文關鍵詞: | 重車 、軸重 、胎壓 |
| 外文關鍵詞: | tire pressure, traffic load, heavy vehicle |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著載重車輛性能之提升,行駛於路面之重車載重有逐年增高之趨勢,並成為造成路面損壞的重要因素之一;本研究蒐集國內有限之交通調查資料,包括國道與省道之交通流量與軸重調查資料,探討行駛於路面之重車的載重情況,進一步利用統計方法針對中山高速公路四個收費站之載重車輛現地軸重調查資料進行分析,詳細說明重車軸重分佈特性,並提出載重車輛單軸及雙軸軸重分佈之計算程序,以供鋪面設計及分析時交通量估算之依據。研究結果顯示中山高速公路四個收費站之單軸及雙軸軸重分佈經統計檢定結果判定為各不相同,各收費站之累積軸重分佈頻率可以韋伯分佈函數加以模擬,並建立可靠的重車軸重分佈預估模式。
以典型國道柔性鋪面為對象,依據中山高速公路建立之軸重分佈模型與載重特性分析,以及鋪面設計厚度、材料強度等相關參數,以鋪面力學行為及鋪面績效之觀點,探討台灣地區交通現況常見之高載重、高胎壓對柔性路面厚度設計交通因子之影響;進而對高載重、高胎壓等雙重影響下之軸重當量因子提出適用於國內高速公路的修正值,供發展本土化柔性路面設計方法之參考。結果顯示,當軸重逐漸高於標準軸重時,隨著載重提高,胎壓增加將使軸重當量因子明顯提高,此時軸重當量因子由疲勞龜裂所控制,而載重繼續提高至鋪面由車轍破壞控制時,則胎壓提高對鋪面之影響較不明顯。
本研究進行以損壞為導向的路面績效評估,考慮的破壞模式包括路面的疲勞破壞(fatigue)及永久變形破壞(permanent deformation),以力學分析的方法分別視瀝青面層的疲勞及各結構層的永久變形為破壞條件。針對中山高速公路之典型斷面進行分析,比較以AASHTO的經驗法與破壞分析法對鋪面績效評估影響的差異,供國內路面設計與成效評估之參考依據。結果顯示以路面績效破壞準則為依據評估交通載重對路面之損害程度普遍較AASHTO以服務指數經驗方法估算之損害程度為高。以中山高速公路為例,考量高載重與高胎壓因素計算之交通量較AASHTO方法之估算值高,可達1.6倍。
為建立符合本土使用之鋪面損壞分析模型,本研究參考各種不同之鋪面成效預估模式,選取評估因子較完整之密西根州破壞模式,並採用2002新準則的鋪面成效評估模式之理念,建立本土化之鋪面成效評估模式,以提供公路管轄單位作為重車之載重限制及提昇路面材料成效之參考依據。利用美國長期鋪面績效計畫中與台灣之氣候環境相近的路段資料進行評估模式之評估因子選取,建立以損壞為導向建立路面的疲勞破壞及永久變形(車轍)破壞之評估模式,其評估因子分別包括4項與6項,判定係數R2分別為0.501與0.678;同時考量以鋪面服務力為導向之國際糙度指標(IRI)成效評估模式,所需評估因子為3項,判定係數R2為0.740。
由於國內目前尚未建立完整之鋪面調查機制以及鋪面維修計畫,因此,本研究僅對於如何採用鋪面相關參數,建立一套鋪面成效評估模式,以及將本土鋪面之相關參數引進,提出修正本土化之鋪面成效評估模式之建議。後續相關研究,若能取得國內足夠之調查數據與鋪面相關參數,可依循本研究之評估流程建立具有代表性之本土化鋪面成效預估模式。
Axle load of heavy vehicles is considered as one of the most important loadings exerted on highway pavements. This dissertation aims at investigating the effects of heavy vehicles on the distress and performance of flexible pavements in Taiwan.
Based on field axle load survey data obtained from 32,459 heavy vehicles at the 4 toll stations on Sun Yat-Sen Freeway in Taiwan, a statistical approach was adopted to characterize axle load distribution of heavy vehicles for pavement design and analysis. Procedures for the calculation of full axle load distribution for single and tandem axles are described, and relevant issues on characterizing axle load distribution data were examined. Statistical analyses show that the distribution patterns at the 4 toll stations, for both single and tandem axles, are significantly different. It was found that the cumulative frequency distribution of single and tandem axle load could best be approximated by the Weibull distribution function. Prediction models were developed and validated, using actual field data, for single and tandem axle load distributions on the national freeway.
Multi-layer elastic theory was used in this study to evaluate the effects of heavy vehicle and high tire pressure on the critical strains which are indicative of pavement distress. With the fatigue cracking and rutting failure models, the equivalent axle load factors were determined for flexible pavements in Taiwan. The results show that, as the axle load increases, higher tire pressure will cause marked increase in the equivalent axle load factor, while fatigue failure is the predominant failure mode. If the axle load continues to increase, the failure mode turns to a rutting one and, in such cases, the effect of increases in tire pressure can be ignored.
In the development of pavement distress model, a mechanistic-empirical (M-E) model incorporating a complete list of field and mechanistic parameters was adopted. Using pertinent information available in DataPave 3.0, regression analyses were conducted to determine the parameters that are significant for the distress model. Consequently, two performance-based pavement evaluation models adaptable to local material and traffic characteristics are established, including the rut prediction model and fatigue life model. Also, a pavement performance life model, which is of great convenience for pavement management purposes in highway agencies, is proposed in terms of international roughness index (IRI). Finally, the performance model was validated using limited field test data available from Sun Yat-Sun Freeway, such that the procedures for further modification of the model for future applications in Taiwan have been advised.
1. American Association of State Highway and Transportation Officials (1986, 1993), Guide for Design of Pavement Structures (Volume 1), AASHTO.
2. Asphalt Institute (1991), Thickness Design - Asphalt Pavement for Highways and Streets, Ninth Edition, The Asphalt Institute, Manual Series No.1 (MS-1).
3. McGhee, P. E. (1999), Summary of the Proposed 2002 Pavement Design Guide, NCHRP Project 1-37A Interim Report.
4. Yoder, E.J., and Witczak, M.W. (1975), Principle of Pavement Design, John Wiley & Sons, New York.
5. Huang, Y. H.(1993), Pavement Analysis and Design, Prentice Hall.
6. 蕭志銘、林樹豪、李梓賢(1999),「三維有限元素法於柔性鋪面之應用」,第十屆鋪面工程學術研究會論文集,基隆,第563-572頁。
7. 劉明樓、黃建維(1999),「柔性邊界於路面之線性與非線性結構分析」,第十屆鋪面工程學術研究會論文集,基隆,第465-474頁。
8. 林志棟、黃偉慶(1996),「臺灣地區柔性路面厚度手冊研擬」,國立中央大學土木工程研究所。
9. Mamlouk, M.S. and Mikhail, M. Y. (1992), "Concept for mechanistic- based performance model for flexible pavements." Transportation Research Record 1448, pp.149-157.
10. 黃偉慶、宋侑玲(2002),「美國2002路面結構設計準則之發展」,臺灣公路工程月刊,第28卷,第9期,第30~39頁。
11. Zhang, Z., Leidy, J.P., Kawa, I. and Hudson, W. R.(2000), " Impact of Changing Traffic Characteristics and Environmental Conditions on Flexible Pavements." Transportation Research Record 1730, pp.125-131.
12. Harichandran, R.S., Buch, N. and Baladi, G. T. (2001), " Flexible Pavement design in Michigan - Transition from Empirical to Mechanistic Methods." Transportation Research Record 1778, pp.100-106.
13. Gillespie, T.D., Karamihas, S.M., Sayers, M.W., Nasim, M.A., Hanaen, W., Ehsan, N., and Cebon, D. (1993), "Effects of Heavy-Vehicle Characteristics on Pavement Response and Performance, " National Cooperative Highway Research Program, Report 353.
14. 陳式毅(1990),「路面損壞個案分析」,台灣公路工程,第十七卷,第二期,第2~21頁。
15. Kim, O.K., Bell, C.A., and Wilson, J.E. (1989), "Effect of increased truck tire pressure on asphalt concrete pavement," Journal of Transportation Engineering, ASCE, Vol.115, No.4, pp.329~350.
16. Hudson, S. W., and Seeds, S.B. (1988), "Evaluation of increased pavement loading and tire pressures," Transportation Research Record 1207, pp.197~206.
17. Sebaaly, P. E., and Tabatabaee, N. (1993), "Effect of tire parameters on pavement damage and load-equivalency factors," Journal of Transportation Engineering, ASCE, Vol.118, No.6, pp.805~819.
18. Finn, F., Saraf, C. L., Kulkarni, R., Nair, K., Smith, W., and Abdullah, A. (1986), " Development of pavement structural subsystem, " NCHRP Report 291.
19. Van De Loo, P. J. (1978), "The creep test: A key tool in asphalt mix design and in the prediction of pavement rutting, " Proceedings, Association of Asphalt Paving Technologists, Vol. 47, pp. 522-554.
20. De Beer, M. (1995), "Preliminary Study into the Actual Pneumatic Tyre Inflation Pressures of Heavy Vehicles in Gauteng," Confidential Draft Report DPVT 233, Division of Roads and Transport Technology, CSIR.
21. Southgate, H. F., and Deen, R. C. (1987), "Effects of load distributions and axle tire configurations on pavement fatigue," Proc., 6th Int. Conf. on Struct. Design of Asphalt Pavements, 1, Michigan, pp.82-93.
22. Wnng, F., and Machemehl, R. B. (2003), " The Current Status and Variability of In-Service Truck Tire Pressures in Texas," Proceedings of 82th annual meeting of Transportation Research Board, Washington D. C..
23. American Association of State Highway and Transportation Officials (1976), Guidelines for Skid Resistant Pavement Design, AASHTO, Washington DC.
24. Carey, W. N. and Irick, P. E. (1960), "The Pavement Serviceability Performance Concept, " Highway Research Bulletin 250.
25. Sayers, M. W. (1995), "On the Calculation of IRI from Longitudinal Road Profile, " TRB.
26. Sayers, M. W. and Gillespie, T. D. and Queiroz, C. A. V. (1986), "The International Road Roughness Experiment, " Washington D.C., U.S.A. ,The World Bank.
27. Al-Omari, B. and Darter,M. I. (1995), " Effect of Pavement Deterioration Types on IRI and Rehabilitation, " Proceedings of 74th annual meeting of Transportation Research Board, Washington D. C..
28. Hajek, J.J., Selezeva, O., Jiang, J. Y. and Mladenovic, G. (2002), "Improving the Reliability of Pavement Loading Estimates Using the Pavement Loading Guide," Proceedings of 81th annual meeting of Transportation Research Board, Washington D. C..
29. Hajek, J.J. (1995), "General Axle Load Equivalency Factors," Transportation Research Record 1482, pp.67~78.
30. Hajek, J.J., and Selezeva, O. (2000), Estimating Cumulative Traffic Loads. Final Report for Phase 1, Federal Highway Administration, Report FHWA-RD-00-054.
31. Hajek, J.J., Selezeva, O., Mladenovic, G., and Jiang, J. (2001), Estimating Cumulative Traffic Loads. Final Report for Phase 2.
32. Conover, W. J. (1999), Practical Nonparametric Statistics, Third Edition, Texas Tech University Press.
33. Harman, D. J., and Davenport, A.G. (1979), "A statistical approach to traffic loading on highway bridges," Canadian Journal of Civil Engineering, Vol. 6, pp.494-513.
34. Fwa, T. F., Ang, B. W., Toh, H. S., and Goh, T. N. (1993), "Estimation of Axle Loads of Heavy Vehicles for Pavement Studies," Transportation Research Record 1388, pp.70-79.
35. Chou, C. P. J., and Ching, C. P. (1995), "Truck Load Distribution and Its Impact on Vehicle Weight Regulations in Taiwan," Transportation Research Record 1501, pp.87-93.
36. Neter, J., Wasserman, W., and Kutner, M. H. (1989), Applied Linear Regression Models, Second Edition, Richard D. Irwin. Inc., Boston, Massachusetts.
37. Churilla, C. J. (1998), "LTPP: The Next Decade, " Public Roads, Vol. 62, No.1.
38. 邱垂德(1999),「邁入第二個十年的美國鋪面長期成效計畫」,中華大學土木工程學系碩士班鋪面管理與維護系統講義。
39. Mark and Signature, (1996), Long-Term Pavement Performance Information Management System Data User’ Reference Manual, Federal Highway Administration, Report FHWA-RD-96.
40. Chou, C. P. J., and Ching, C. P. (1995), "Truck Load Distribution and Its Impact on Vehicle Weight Regulations in Taiwan," Transportation Research Record 1501, pp.87-93.
41. Fwa, T. F., Ang, B. W., Toh, H. S., and Goh, T. N.,(1993), "Estimation of Axle Loads of Heavy Vehicles for Pavement Studies," Transportation Research Record 1388, pp.70-79.
42. Neter, J., Wasserman, W., and Kutner, M. H. (1989), Applied Linear Regression Models, Second Edition, Richard D. Irwin. Inc., Boston, Massachusetts.
43. Weissman, S. L. (1999), "Influence of tire-pavement contact stress distribution on development of distress mechanisms in pavements, " Transportation Research Record 1655, pp.161-167.
44. 陳一昌、吳學禮、房性中(1995),「中山高速公路新竹至員林段拓寬工程柔性路面厚度設計研討」,1995年中、美、斐柔性路面厚度設計研討會專輯(二),第1~13頁。
45. 廖溪坤(1999),「材料對石膠泥瀝青混凝土成效特性影響之研究」,碩士論文,國立中央大學土木工程研究所,桃園。
46. 吳俊杰(1999),「礦物添加物對石膠泥瀝青混凝土疲勞行為之影響」,碩士論文,國立中興大學土木工程研究所,臺中。
47. Asphalt Institute (1982), Research and Development of The Asphalt Institute''s Thickness Design Manual (MS-1), Ninth Edition, The Asphalt Institute Research Report No.82-2 RR-82-2.
48. ASTM (1990), ASTM-Standard Specification for Highway Weigh-in-Motion(WIM) System with User Requirements and Test Methods, American Society for Testing and Materials.
49. Sayers, M. W. and Karamihas, S. M. (1998), "The Ilittle Book of Profiling – Basic Information about Measuring and Interpreting Road Profiles, " The Regent of the University of Michigan.