跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張文豪
Wen-Hao Chang
論文名稱: 自聚性砷化銦鎵量子點之光電特性
Electronic and Optical Properties of InxGa1-xAsSelf-Assembled Quantum Dots
指導教授: 徐子民
Tzu-Min Hsu
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 89
語文別: 中文
論文頁數: 137
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 個主題。首先,在論文的第一部份,我們以不同的光譜技術研究在砷化銦鎵量子
    點中侷限能階的物理特徵。我們使用了三種不同的光譜技術,分別是光激發螢光
    光譜、光電流光譜及電調制反射光譜。這些光譜技術均可有效地檢測量子點能帶
    間的光學躍遷,但卻各自具有不同的物理特徵。就量子點的螢光光譜而言,可研
    究量子點的零維度特徵、填態效應、載子動態行為及溫度效應對載子分布的影響。
    而螢光光譜亦被利用來研究經熱處理後的量子點侷限能階。由光譜特性可推斷,
    即使經過嚴重的相互擴散後,量子點依然保有其零維度的物理特性。光電流光譜
    則是被利用來檢測溫度及電場效應對量子點能階的影響。利用測量光電流的溫度
    變化,可探究載子因熱效應而逃脫出量子點的過程。而低溫的光電流量測,則可
    研究載子藉由電場的幫助而穿遂到量子點外的現象。同時,此外加於量子點的電
    場,不僅會造成所謂的史塔克效應,也會造成不同量子點大小的選擇性穿遂。針
    對量子點的電場效應,我們亦利用電場調制反射光譜進行更深入的探討。我們觀
    察到一種不對稱的量子侷限史塔克效應,此意味在量子點中的電子電洞對具有內
    建的電偶極矩。
    在建立量子點侷限能階的概念後,在論文的第二部份,我們將介紹如何操控
    電子於這些量子點的能階中。在這類的研究中,量子點是被設計於空間電荷的結
    構中,因此可以藉由外加適當的電壓來對量子點充電或放電。我們發展出一種光
    譜技術,稱為電子填充調制反射光譜,用以研究砷化銦鎵量子點的充放電行為。
    這種電子填充反射譜基本上是一種新形式的電調製反射譜,但其光譜特徵卻更類
    似傳統用於半導體的空間電荷技術,如電容電壓量測及導納量測。首先,我們結
    合電容電壓量測及電子填充反射譜來研究量子點的電子分布及能階佔有率。利用
    電容電壓的特徵曲線,我們建構出量子點內的能帶結構,並以此推算出對量子點
    充電時所需要的庫倫充電能量大小。電子的能階佔有率則是利用電子填充反射譜
    的強度來估算。我們發現在費米能階附近的電子分布相當不均勻,而此現象則可
    歸因於不同量子點間的電子耦合分布。同時,溫度效應對電子能階佔有率的影響
    也在這個研究中一併的探討。另一方面,結合電子填充反射譜及導納量測,亦可
    用來研究砷化銦量子點的充放電行為。藉由導納量測,我們可以研究量子電充電
    的動態行為。我們解析出對於量子點不同能階的充電行為,也因此得探討電子自
    不同能階逃脫的物理機制。量子點經過充電後的光學躍遷可以由電子填充反射譜
    來觀察。我們清楚的觀察到隨著電子填入量子點,光學躍遷因鮑利阻斷而造成強
    度減弱的現象。同時,因量子點帶電而產生的帶電激子,及其所造成的能量修正
    也一併被觀察到。最後我們將這些量測到的帶電激子能量與理論推算的庫倫作用
    力比較,並提出合理的模型解釋



    self-assembled quantum dots. The main focus of this dissertation can be divided into
    two parts. First, we present optical investigations with regard to the physical features of
    the confined states in InxGa1-xAs quantum dots. Three optical spectroscopes have been
    employed: photoluminescence, photocurrent and electroreflectance. These
    spectroscopes in principle can all be utilized to probe the interband transitions in the
    InxGa1-xAs quantum dots, but possess characteristic features specific to the different
    physical mechanisms involved in each. The general features of the quantum-dot
    photoluminescence, including the state-filling effect and its interplay with carrier
    dynamics, and the temperature effects on carrier distributions, are comprehensively
    discussed. The photoluminescence spectroscopy was further utilized to study the tuning
    of confined energy levels in InAs self-assembled dots via rapid thermal annealing.
    Intense and sharp interband transitions were observed, which demonstrates
    unambiguously that the investigated quantum dots retained their optical quality and
    zero-dimensional properties even after the strongest condition of interdiffusion.
    Photocurrent spectroscopy was used to investigate both temperature and electric-field
    effects on the InAs dots. The path for thermal escapes of photogenerated electron-hole
    pair from the dot states is clarified. Low-temperature photocurrent also revealed a clear
    feature of field-induced escapes via direct tunneling out of the quantum dots. The
    applied electric field not only leads to an energy shift due to quantum-confined Stark
    effects, but also causes a size selective tunneling. A more detailed study of electric-field
    ii
    effects on the quantum dot interband transitions was presented by electroreflectance
    spectroscopy. Asymmetric Stark shifts in transitions energies were observed, implying
    that the optically excited electron-hole pairs exhibit built-in dipole moments in the
    quantum dots.
    After having the idea of confined states in the InxGa1-xAs self-assembled dots, in
    the second part of this dissertation, we present how to manipulate and corral electrons in
    these confined states. The quantum dots were incorporated into a space-charge structure,
    so that the charging of quantum dots can be achieved by suitably applied bias voltage,
    forming charged quantum dots. We developed a novel spectroscopic technique, called
    electron-filling modulation reflectance (EFR), to study the charging of InxGa1-xAs
    self-assembled dots. The EFR technique is essentially a new kind of electroreflectance,
    but possessing characteristic features that are more similar to the conventional
    space-charge techniques, such as capacitance-voltage and admittance spectroscopes.
    Electron distribution and level occupation in quantum dot ensemble were investigated
    by combining the EFR with the capacitance-voltage spectroscopy. We used the
    capacitance-voltage characteristics to construct the electronic structures of the
    investigated In0.5Ga0.5As quantum dots. The Coulomb-charging energy required for
    adding electrons into the dots were also deduced from the capacitance-voltage
    characteristics. The electron level occupations were investigated by monitoring the
    measured EFR intensity. We found that the electron distribution in the dot ensemble was
    inhomogeneous near the Fermi level, which was attributed to the correlated charge
    transfer among different dots. The temperature effects on electron thermal population in
    the dots are demonstrated. We also present a combination of EFR with admittance
    spectroscopy to study the charging of InAs quantum dots. Charging dynamics of the
    InAs dots were characterized by the admittance spectroscopy. Clear features for
    different electronic shells of the InAs dots were resolved, enabling a separate
    investigation of the electron escape behaviors in different dot shells. The interband
    transitions of charged quantum dots were obtained from EFR measurements. We
    demonstrate clear Pauli blocking of the transition strength caused by the electrons being
    charged into the quantum dots. Remarkable energy modification due to the formation of
    negatively charged exciton was observed. The experimental determined energy shifts
    were finally compared with the theoretical calculation of Coulomb interactions in a
    quantum dot with a parabolic confining potential.

    Dissertation Abstract i Contents iii List of Tables v List of Figures vi Chapter 1 General Introduction 1 1.1. Prelude 1 1.2. Outline of this dissertation 5 Chapter 2 Overview of the Structural Properties of Self-Assembled Quantum Dots 7 2.1. Formation of Self-Assembled Quantum Dots 7 2.2. Structural Features of Self-Assembled InGaAs Quantum Dots 10 2.3. Strain in Lattice-Mismatched Quantum Dots 14 2.3.1 Strain distribution 14 2.3.2 Impacts of strain on electronic properties 19 Chapter 3 Optical Investigation of Confined Energy States in In(Ga)As Self-Assembled Quantum Dots 23 3.1. Introduction 23 3.2. Modeling of Three-Dimensionally Confined States in Quantum Dots 25 3.2.1 Disk-like quantum dot 26 3.2.2 Parabolic quantum dot 28 3.2.3 Lens-shaped quantum dot 31 3.2.4 Pyramidal Quantum Dots 34 3.3. Photoluminescence Spectroscopy 37 3.3.1 State-filling effects 37 3.3.2 Temperature dependence 42 3.3.3 Energy-level tuning by thermal treatment 45 iv 3.4. Photocurrent Spectroscopy 52 3.4.1 Experimental Details 53 3.4.2 Photocarrier escape from the InAs quantum dots 54 3.4.3 Rate-equation model 57 3.4.4 Electric-field induced direct tunnelings 61 3.4.5 Stoke shift in InAs quantum dots 62 3.5. Electroreflectance Spectroscopy 65 3.5.1 Quantum-Confined Stark Effect 65 3.5.2 Experimental Details 67 3.5.3 Asymmetric Stark Shift: built-in dipole moment 68 Chapter 4 Manipulating Electrons in Charged Self-Assembled Quantum Dots 74 4.1. Introduction 74 4.2. Space-Charge Techniques 78 4.2.1 Capacitance-voltage profiling 78 4.2.2 Admittance spectroscopy 82 4.2.3 Electron-filling modulation reflectance 84 4.3. Electron Distribution and Level Occupation in Quantum Dots Ensemble 88 4.3.1 Experimental Details 88 4.3.2 Electronic Structures and Charge Accumulations 89 4.3.3 Electron level occupations 93 4.3.4 Thermal occupation in charged quantum dots 99 4.4. Charging of InAs Self-Assembled Quantum Dots 102 4.4.1 Experimental Details 103 4.4.2 Charging Dynamics in Quantum Dots 104 4.4.3 Charged Excitons in Quantum Dots 109 Chapter 5 Conclusions 115 Appendixes 118 Reference 125 Publication Lists 135

    1. For recent review of self-assembled quantum dots, see for example: D. Bimberg, M.
    Grundmann and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester,
    1999); M. Sugawara, Self-assembled InGaAs/GaAs Quantum Dots, Vol. 60 of
    Semiconductor and Semimetals, edited by R. K. Willardson and E. R. Weber (Academic
    Press, New York, 1999).
    2. Y. Arakawa, and H. Sakaki, Appl. Phys. Lett. 40 939 (1982).
    3. N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S.
    Ruvimov, M. V. Maximov, P. S. Kop''ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gösele,
    and J. Heydenreich, Electron. Lett. 30, 1416, (1994).
    4. N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg V. M. Ustinov, A. Yu. Egorov,
    A. E. Zhukov, M. V. Maximov, P. S. Kop''ev and Zh. I. Alferov, Appl. Phys. Lett. 69, 1226
    (1996).
    5. D. Bimberg, N. N. Ledentsov, M. Grundmann, N. Kirstaedter, O. G. Schmidt, M.-H. Mao,
    V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kop''ev, Zh. I. Alferov, S. S. Ruvimov, U.
    Gösele, and J. Heydenreich, Jpn. J. Appl. Phys.35, 1311(1996).
    6. N. N. Ledentsov, V. A. Shchukin, M. Grundmann, N. Kirstaedter, J. Böhrer, O. Schmidt, D.
    Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kop''ev, S. V. Zaitsev, N. Yu.
    Gordeev, Zh. I. Alferov, A. I. Borovkov, A. O. Kosogov, S. S. Ruvimov, P. Werner, U.
    Gosele, and J. Heydenreich, Phys. Rev. B 54, 8743(1996).
    7. M. V. Maximov, Yu. M. Shernyakov, A. F. Tsatsul''nikov, A. V. Lunev, A. V. Sakharov, V.
    M. Ustinov, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, P. S. Kop''ev, L. V. Asryan, Zh. I.
    Alferov, N. N. Ledentsov, D. Bimberg, A. O. Kosogov and P. Werner, J. Appl. Phys. 83,
    5561 (1998)
    8. R. L. Sellin, Ch. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, Appl.
    Phys. Lett. 78, 1207 (2001).
    9. D. L. Huffaker, O. Baklenov, L. A. Graham, B. G. Streetman, and D. G. Deppe,
    Appl. Phys. Lett. 70, 2356 (1997).
    10. For recent progress in quantum dot lasers, see for example: Marius Grundmann, Frank
    Heinrichsdorff, Nikolai N. Ledentsov, Christian Ribbat, Dieter Bimberg, Alexei E. Zhukov,
    Alexei R. Kovsh, Mikhail V. Maximov, Yuri M. Shernyakov, Daniel A. Lifshits, Victor M.
    126
    Ustinov, and Zhores I. Alferov, Jpn. J. Appl. Phys., Part 1 39, 2341 (2000).
    11. T. Lundstrom, W. Schoenfeld, H. Lee, P. M. Petroff, Science, 286, 2312 (1999).
    12. J. J. Finley, M. Skalitz, M. Arzberger, A. Zrenner, G. Böhm, and G. Abstreiter, Appl. Phys.
    Lett. 73, 2618 (1998).
    13. M. C. Bödefeld, R. J. Warburton, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro and P. M.
    Petroff, Appl. Phys. Lett. 74, 1839 (1999).
    14. W. V. Schoenfeld, T. Lundstrom, P. M. Petroff and D. Gershoni, Appl. Phys. Lett. 74, 2194
    (1999).
    15. W.-H. Chang, W. Y. Chen, M. C. Cheng, C. Y. Lai, T. M. Hsu, N. -T. Yeh and J.-I.Chyi,
    Phys. Rev. B (submitted, 2001).
    16. T. M. Hsu, W.-H. Chang, N. T. Yeh and J.-I.Chyi, Appl. Phys. Lett. (submitted, 2001).
    17. T. M. Hsu, W.-H. Chang, C. C. Huang, N. T. Yeh and J.-I. Chyi, Appl. Phys. Lett. 78 1760
    (2001).
    18. W.-H. Chang, T. M. Hsu, C. C. Huang, N. T. Yeh and J.-I. Chyi, (2001), , Phys. Stat. Sol.
    (b), 224, No. 1, 89-92 (2001).
    19. W.-H.Chang, T. M. Hsu, C. C. Huang, S. L. Hsu, C. Y. Lai, N. T. Yeh, T. E. Nee and J.-I.
    Chyi, Phys. stat. Solidi (b), 224, No. 1, 85-88 (2001).
    20. W.-H. Chang, T. M. Hsu, N. T. Yeh and J.-I. Chyi, Phys. Rev. B 62, 13040, (2000).
    21. W.-H.Chang, T.M.Hsu, C. C. Huang, S. L. Hsu, C. Y. Lai, N. T. Yeh and J.-I. Chyi, Phys.
    Rev. B 62, 6959, (2000).
    22. T. M. Hsu, Y. S. Lan, W.-H. Chang, N. T. Yeh and J.-I. Chyi, Appl. Phys. Lett. 76, 691,
    (2000).
    23. T. M. Hsu, W.-H. Chang, K. F. Tsai, J.-I. Chyi, N. T. Yeh and T. E. Nee, Phys. Rev. B 60
    R2189 (1999).
    24. W.-H. Chang, T. M. Hsu, K. F. Tsai, T. E. Nee, J.-I. Chyi and N. T. Yeh, Jpn. J. Appl. Phys.
    Vol.38, No.1B.554 (1999).
    25. I. N. Stranski and L. Krastanow, Sitzungsberichte d. Akad. D. Wissenschaften in Wien,
    Abt. Iib, Band 146, p. 797 (1937).
    26. D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943, (1990).
    27. F. C. Frank and J. H. van der Merwe, Proc. Roy. Soc. Lond. A 198, 205 (1949).
    28. M. Volmer and A. Weber, Z. Phys. Chem. 119, 277, (1926).
    127
    29. L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, Appl. Phys. Lett. 47,
    1099, (1985).
    30. C. W. Synder, B. G. Orr, D. Kessler, and L. M. Sander, Phys. Rev. Lett. 66, 3032, (1991).
    31. D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. DenBaars, and P. M. Petroff, Appl.
    Phys. Lett. 63, 3203, (1993).
    32. D. Bimberg, QUEST Workshop on Quantum Structures, Colloquium Abstracts, Santa
    Barbara, p. 15.
    33. A. Madhukar, Q. Xie, P. Chen, and Konkar, Appl. Phys. Lett. 64, 2727, (1994).
    34. J. M. Moison, F. Houzay, F. Barthe, Leprince, E. Andre, and O. Vatel, Appl. Phys. Lett. 64,
    196, (1994).
    35. S. Ruvimov, P. Werner, K. Scheerschmidt, J. Heydenreich, U. Richter, N. N. Ledenysov, M.
    Grundmann, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, P. S. Kop’ev, and Zh. I. Alferov,
    Phys. Rev. B 51, 14766, (1995).
    36. S. Ruvimov, and K. Scheerschmidt, Phys. Stat. Sol. (a) 150, 471, (1995).
    37. D. Bimberg, M. Grundmann, N. N. Ledenysov, S. S. Ruvimov, P. Werner, U. Richter, J.
    Heydenreich, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, Thin Solid Films 267, 32,
    (1995).
    38. M. Grundmann, N. N. Ledenysov, J. Christen, J. Bohrer, D. Bimberg, S. S. Ruvimov, P.
    Werner, U. Richter, U. Gosele, J. Heydenreich, V. M. Ustinov, A. Yu. Egorov, A. E.
    Zhukov, P. S. Kop’ev, and Zh. I. Alferov, Phys. Stat. Sol. (b) 188, 249, (1995).
    39. H. Lee, R. Lowe-Webb, W. Yang, and P. C. Sercel, Appl. Phys. Lett. 72, 812, (1998).
    40. W. Yang, H. Lee, T. J. Johnson, P. C. Sercel, and A. G. Norman, Phys. Rev. B 61, 2784
    (2000).
    41. D. Leonard, K. Pond, and P. M. Petroff, Phys. Rev. B 50, 11687, (1994).
    42. X. Z. Liao, J. Zou, D. J. H. Cockayne, R. Leon, and C. Lobo, Phys. Rev. Lett. 82, 5148
    (1999).
    43. W. Wu, J. R. Tucker, G. S. Solomon and J. S. Harris, Jr., Appl. Phys. Lett. 71, 1083,
    (1997).
    44. G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, Jr., Phys. Rev. Lett. 76, 952
    (1996).
    45. B. Legrand, B. Grandidier, J. P. Nys, D. Stie ´ venard, J. M. Ge´ rard and V. Thierry-Mieg,
    Appl. Phys. Lett. 73, 96, (1998).
    46. P. B. Joyce, T. J. Krzyzewski, G. R. Bell, B. A. Joyce, and T. S. Jones, Phys. Rev. B 58,
    128
    R15 981 (1998).
    47. N. Liu, J. Tersoff, O. Baklenov, A. L. Holmes, Jr., and C. K. Shih, Phys. Rev. Lett. 84,
    334, (2000)
    48. P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones S. Malik, D. Childs, and R. Murray,
    Phys. Rev. B 62, 10891, (2000).
    49. M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B 52, 11969 (1995).
    50. M. A. Cusack, P. R. Briddon, and M. Jaros, Phys. Rev. B 54, R2300 (1996).
    51. J. R. Downes, D. A. Faus, and E. P. O’Reilly, J. Appl. Phys. 82, 3754, (1997).
    52. J. D. Eshelby, Proc. Roy. Soc. Lond. A 241, 376 (1957).
    53. John H. Davies, J. Appl. Phys. 84, 1358 (1998).
    54. A. D. Andreev, J. R. Downes, D. A. Faux, and E. P. O''Reilly, J. Appl. Phys. 86, 297
    (1999).
    55. D. A. Faux and G. S. Pearson, Phys. Rev. B 62, R4798 (2000).
    56. G. S. Pearson and D. A. Faux, J. Appl. Phys. 88, 730 (2000).
    57. John H. Davies, Appl. Phys. Lett. 75, 4142 (1999).
    58. A. D. Andreev and E. P. O''Reilly, Phys. Rev. B 62, 15851 (2000).
    59. D. E. Aspnes and M. Cardona, Phys. Rev. B 17, 726 (1978).
    60. J.-Y. Marzin and G. Bastard, Solid State Commun. 92, 437, (1994).
    61. M. Fricke, A. Lorke, J. P. Kotthaus, G. Medeiros-Ribeiro, and P. M. Petroff, Europhys.
    Lett. 36, 197 (1996).
    62. C. Guasch, C. M. Sotomayor Torres, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, and P.
    S. Kop’ev, Superlattices Microstruct. 21, 509 (1997).
    63. M. J. Steer, D. J. Mowbray, W. R. Tribe, M. S. Skolnick, M. D. Sturge, M. Hopkinson, A.
    G. Cullis, C. R. Whitehouse, and R. Murray, Phys. Rev. B 54, 17 738 (1996); L. R. Wilson,
    D. J. Mowbray, M. S. Skolnick, M. Morifuji, M. J. Steer, I. A. Larkin, and M. Hopkinson,
    ibid. 57, R2073 (1998).
    64. M. A. Cusack, P. R. Briddon, and M. Jaros, Phys. Rev. B 56, 4047 (1997).
    65. L. R. C. Fonseca, J. L. Jimenez, and J. P. Leburton, and R. M. Martin, Phys. Rev. B 57,
    4017 (1998).
    66. H. Jiang and J. Singh, Physica E 2, 614 (1998); 2, 720 (1998); H. Jiang and J. Singh, Phys.
    Rev. B 56, 4696 (1997); H. Jiang andJ. Singh, Appl. Phys. Lett. 71, 3239 (1997).
    129
    67. H. Jiang and J. Singh, IEEE J. Quantum Electron. 34, 1188 (1998).
    68. C. Pryor, Phys. Rev. B 57, 7190 (1998).
    69. O. Stier, M. Grundmann, and D. Bimberg, Phys. Rev. B 59, 5688 (1999).
    70. J. Kim, L.-W. Wang, and A. Zunger, Phys. Rev. B 57, R9408, (1998).
    71. C. Pryor, J. Kim, L.-W. Wang, A. Williamson, and A. Zunger, J. Appl. Phys. 83, 2548
    (1998).
    72. J. Garcia, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, F. Feng, A. Lorke, J. Kotthaus, and P.
    Petroff, Appl. Phys. Lett. 71, 2014 (1997).
    73. M. Rubin, G. Medeiros-Ribeiro, J. O’Shea, M. Chin, E. Lee, P. Petroff, and V.
    Narayanamurti, Phys. Rev. Lett. 77, 5268 (1996).
    74. A. Wojs, P. Hawrylak, S. Fafard, and L. Jacak, Phys. Rev B 54, 5604 (1996).
    75. A. J. Williamson, L. W. Wang, and A. Zunger Phys. Rev B 62, 12963 (2000).
    76. H. Lipsanen, M. Sopanem, and J. Ahopelto, Phys. Rev. B 51, 13868 (1995).
    77. K. Mukai, N. Ohtsuka, H. Shoji, and M. Sugawara Appl. Phys. Lett. 68, 3013 (1996).
    78. K. Mukai, N. Ohtsuka, H. Shoji, and M. Sugawara Phys. Rev B 54, R5243 (1996).
    79. K. H. Schmidt, G. Medeiros-Ribeiro, M. Oestreich, P. M. Petroff, and G. H. Dohler, Phys.
    Rev. B 54, 11346 (1996).
    80. M. Grundmann, N.N. Ledentsov, O. Stier, J. Böhrer, D. Bimberg, V.M. Ustinov, P.S.
    Kop''ev, and Zh.I. Alferov, Phys. Rev. B 53, R10509 (1996).
    81. I. Itskevich, M. Skolnick, D. Mowbray, I. Troyan, S. Lyapin, L. Wilson, M. Steer, M.
    Hopkinson, L. Eaves, and P. Main, Phys. Rev. B 60, R2185 (1999).
    82. U. Bockelmann and G. Bastard, Phys. Rev B 42, 8947 (1990).
    83. H. Benisty, M. C. Sotomayor-Torres, and C. Weisbuch, Phys. Rev B 44, 10945 (1991).
    84. M. Grundmann, and D. Bimberg, Phys. Rev. B 55, 9740 (1997).
    85. Haiping Yu, Sam Lycett, Christine Roberts, and Ray Murray Appl. Phys. Lett 69, 4087
    (1996).
    86. F. Adler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge,
    and A. Forchel J. Appl. Phys. 80, 4019 (1996).
    87. U. Bockelmann and T. Egeler, Phys. Rev B 46, 15574 (1992).
    88. S. Raymond, K. Hinzer, S. Fafard, J. L. Merz, Phys. Rev. B 61, R16331 (2000).
    130
    89. A. Polimeni, A. Patanè, M. Henini, L. Eaves, and P. C. Main, Phys. Rev. B 59, 5064
    (1999).
    90. See for example, “Semiconductor Quantum Wells Intermixing”, Optoelectronic Properties
    of Semiconductors and Superlattices, Vol. 8, edited by E. H. Li (Gordon and Breach,
    Amsterdam, 2000); For review papers on quantum well intermixing: J. H. Marsh,
    Semicond. Sci. Technol. 8, 1136 (1993); D. G. Deppe and N. Holonyak, Jr., J. Appl. Phys.
    64, R93 (1988).
    91. R. Leon, Yong Kim, C. Jagadish, M. Gal, J. Zou, and D. J. H. Cockayne, Appl. Phys. Lett.
    69, 1888 (1996).
    92. A. O. Kosogov, P. Werner, U. Gosele, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu.
    Egorov, A. E. Zhukov, P. S. Kop''ev, N. A. Bert, and Zh. I. Alferov, Appl. Phys. Lett. 69,
    3072 (1996).
    93. S. Malik, C. Roberts, R. Murray, and M. Pate, Appl. Phys. Lett. 71, 1987 (1997).
    94. C. Lobo, R. Leon, S. Fafard, and P. G. Piva, Appl. Phys. Lett. 72, 2850 (1998).
    95. S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, Appl.
    Phys. Lett. 72, 3335 (1998).
    96. R. Leon, S. Fafard, P. G. Piva, S. Ruvimov, and Z. Liliental-Weber, Phys. Rev. B 58,
    R4262 (1998).
    97. S. Fafard, Z. R. Wasilewski, C. Ni. Allen, D. Picard, M. Spanner, J. P. McCaffrey, and P. G.
    Piva, Phys. Rev. B 59, 15368 (1999).
    98. S. Fafard and C. Ni, Allen, Appl. Phys. Lett. 75, 2374 (1999).
    99. N. Perret, D. Morris, L. Franchomme-Fossé, R. Côté, and S. Fafard Phys. Rev. B 62, 5092
    (2000).
    100. S. J. Xu, H. Wang, Q. Li, M. H. Xie, X. C. Wang, W. J. Fan and S. L. Feng, Appl. Phys.
    Lett. 77, 2130 (2000).
    101. Y. Berhane, M. O. Manasreh, H. Yang and G. J. Salamo Appl. Phys. Lett. 78, 2196 (2001).
    102. S. Malik, E. C. Le Ru, D. Childs, and R. Murray, Phys. Rev. B, 63, 155313 (2001).
    103. X. Z. Liao, J. Zou, D. J. H. Cockayne, R. Leon, and C. Lobo, Phys. Rev. Lett 82, 5148
    (1999).
    104. R. Heitz, M. Grundmann, N. N. Ledentsov, L. Eckey, M. Veit, D. Bimberg, V. M. Ustinov,
    A. Yu. Egorov, A. E. Zhukov, P. S. Kop’ev, and Zh. I. Alferov, Appl. Phys. Lett. 68, 361
    (1996).
    105. M. Grundmann, J. Christen, N. N. Ledentsov, J. Böhrer, D. Bimberg, S. S. Ruvimov, P.
    131
    Werner, U. Richter, U. Gösele, J. Heydenreich, V. M. Ustinov, A. Yu. Egorov, A. E.
    Zhukov, P. S. Kop''ev, and Zh. I. Alferov, Phys. Rev. Lett. 74, 4043 (1995).
    106. R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro, and P. M.
    Petroff, Phys. Rev. Lett. 79, 5282 (1997).
    107. P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P.
    O''Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R.
    David, A. G. Cullis, G. Hill, and J. C. Clark, Phys. Rev. Lett. 84, 733 (2000).
    108. P. W. Fry, I. E. Itskevich, S. R. Parnell, J. J. Finley, L. R. Wilson, K. L. Schumacher, D. J.
    Mowbray, M. S. Skolnick, M. Al-Khafaji, A. G. Cullis, M. Hopkinson, J. C. Clark, and G.
    Hill, Phys. Rev. B 62, 16784 (2000).
    109. P. W. Fry, J. J. Finley, L. R. Wilson, A. Lemaître, D. J. Mowbray, M. S. Skolnick, M.
    Hopkinson, G. Hill, and J. C. Clark, Appl. Phys. Lett. 77, 4344 (2000).
    110. W. Franz, Z. Naturforsch. A 13, 484 (1958).
    111. L. V. Keldysh, Sov. Phys. JETP 7, 7878 (1958).
    112. G. Vincent, A. Chantre, and D. Bois, J. Appl. Phys. 50, 5484 (1979).
    113. L. Chu, M. Arzberger, A. Zrenner, G. Böhm and G. Abstreiter, Appl. Phys. Lett, 75, 2247
    (1999).
    114. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegman, T. H. Wood and
    C. A. Burrus, Phys. Rev. B 32, 1043 (1985).
    115. S. Raymond, J. P. Reynolds, J. L. Merz, S. Fafard, Y. Feng and S. Charbonneau, Phys. Rev.
    B 58, R13415 (1998).
    116. J. A. Barker and E. P. O’Reilly, Phys. Rev. B 61, 13840 (2000).
    117. I. E. Itskevich, S. I. Rybchenko, I. I. Tartakovskii, S. T. Stoddart, A. Levin, P. C. Main, L.
    Eaves, M. Henini, and S. Parnell, Appl. Phys. Lett. 76, 3932 (2000).
    118. F. H. Pollak, Handbook on semiconductors, edited by M. Balkanski (North Holland, New
    York, 1994), Vol. 2.
    119. K. Nishi, H. Saito, S. Sugou, and J. -S. Lee, Appl. Phys. Lett. 74,1111 (1999).
    120. V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov,A. V. Lunev, B.
    V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N.
    N. Ledentsov, and D. Bimberg, Appl. Phys. Lett. 74, 2815 (1999).
    121. N. -T. Yeh, T. -E. Nee, J. -I. Chyi. T. M. Hsu and C. C. Huang, Appl. Phys. Lett.76, 1567
    (2000).
    122. L. Aigouy, T. Holden, F. H. Pollack, N. N. Ledentsov, W. M. Ustinov, P. S. Kop’ev and D.
    132
    Bimberg, Appl. Phys. Lett. 70, 3329 (1997).
    123. A. Patane`, A. Levin, A. Polimeni, F. Schindler, P. C. Main, L. Eaves, and M. Henini,
    Appl. Phys. Lett. 77, 2979 (2000).
    124. M. V. Maximov, A. F. Tsatsul''nikov, B. V. Volovik, D. S. Sizov, Yu. M. Shernyakov, I. N.
    Kaiander, A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, V. M. Ustinov, Zh. I. Alferov, R.
    Heitz, V. A. Shchukin, N. N. Ledentsov, D. Bimberg, Yu. G. Musikhin and W. Neumann,
    Phys. Rev. B 62, 16671 (2000)
    125. H. Drexler, D. Leonard, W. Hansen, J. P. Kotthaus, and P. M. Petroff, Phys. Rev. Lett. 73,
    2252 (1994).
    126. G. Medeiros-Ribeiro, D. Leonard, and P. M. Petroff, Appl. Phys. Lett. 66, 1767 (1995).
    127. H Grabert and H. Horner Z. Phys. B 85, 317, “Special Issue on Single Charge Tunneling”,
    (1991).
    128. H. Fukuyama and T. Ando, “Transport Phenomena in Mesoscopic System”, Springer,
    Berlin, (1992);
    129. H. Grabert and M. H. Devoret “Single Charge Tunneling-Coulomb Blackade Phenomena
    in Nanostructures”, Plenum Press, New York, (1992);
    130. M. A. Kastner, Physics Today 1, 25, (1993).
    131. P. N. Brunkov, S. G. Konnikov, V. M. Ustinov, A. E. Zhukov, A. Yu. Egorov, V. M.
    Maximov, N. N. Ledentsov, and P. S. Kop’ev, Semiconductors 30, 492, (1996)
    132. P. N. Brounkov, N. N. Faleev, Yu. G. Musikhin, A. A. Suvorova, A. F. Tsatsul’nikov, V.
    M. Maximov, A. E. Zhukov, A. Yu. Egorov, V. M. Ustinov, P. S. Kop’ev, and S. G.
    Konnikov, The Physics of Semiconductors World Scientific, Singapore, p. 1361 (1996).
    133. P. N. Brounkov, N. N. Faleev, Yu. G. Musikhin, A. A. Suvorova, A. F. Tsatsul’nikov, V.
    M. Maximov, A. Yu. Egorov, A. E. Zhukov, V. M. Ustinov, N. N. Ledentsov, P. S.
    Kop’ev, and S. G. Konnikov, Inst. Phys. Conf. Ser. 155 IOP, Bristol, p. 841, (1997).
    134. P. N. Brounkov, A. Polimeni, S. T. Stoddart, M. Henini, L. Eaves, P. C. Main, A. R. Kovsh,
    Yu. G. Musikhin, and S. G. Konnikov, Appl. Phys. Lett. 73, 1092 (1998).
    135. S. Anand, N. Carlsson, M. E. Pistol, L. Samuelson, and W. Seifert, Appl. Phys. Lett. 67,
    3016 (1995).
    136. S. Anand, N. Carlsson, M.-E. Pistol, L. Samuelson, and W. Seifert J. Appl. Phys. 84, 3747
    (1998).
    137. C. M. A. Kapteyn, F. Heinrichsdorff, O. Stier, R. Heitz, M. Grundmann, N. D. Zakharov,
    D. Bimberg and P. Werner, Phys. Rev. B 60, 14265 (1999).
    133
    138. S. K. Zhang, H. J. Zhu, F. Lu, Z. M. Jiang, and Xun Wang, Phys. Rev. Lett. 80, 3340
    (1998).
    139. C. M. A. Kapteyn, M. Lion, R. Heitz, D. Bimberg, C. Miesner, T. Asperger, K. Brunner,
    and G. Abstreiter, Appl. Phys. Lett. 77, 4169 (2000).
    140. T. Asperger, C. Miesner, K. Brunner, and G. Abstreiter, Proceedings of “International
    Conference on Semiconductor Quantum Dots (QD2000)”. Munich, Germany, July 31, p.
    237, (2000); ibid, Phys. Stat. Sol. (b) 224, No.1, 237 (2001).
    141. C. Miesner, T. Asperger, K. Brunner, and G. Abstreiter, Appl. Phys. Lett. 77, 2704 (2000).
    142. H. Pettersson, S. Anand, H. G. Grimmeiss, and L. Samuelson, Phys. Rev. B 53,
    R10 497 (1996).
    143. R. J. Warburton, B. T. Miller, C. S. Dürr, C. Bödefeld, K. Karrai, and J. P. Kotthaus, G.
    Medeiros-Ribeiro, P. M. Petroff and S. Huant, Phys. Rev. B 58, 16221 (1998).
    144. See for example, D. V. Lang, J. Appl. Phys. 45, 3023 (1974).
    145. D. V. Lang, M. B. Panish, F. Capasso, J. Allam, R. A. Hamm, A. M. Sergent, and W. T. T.
    Sang, Appl. Phys. Lett. 45, 3023 (1974).
    146. A. I. Yakimov, N. P. Stepina, A. V. Dvurechenskii, A. I. Nikiforov, and A. V. Nenashev,
    Phys. Rev. B 63, 045312 (2001).
    147. A. I. Yakimov, A. V. Dvurechenskii, N. P. Stepina, A. I. Nikiforov, and A. V. Nenashev
    JETP 92, 500 (2001).
    148. R. Leon, S. Marcinkevièus, X. Z. Liao, J. Zou, D. J. H. Cock-ayne,and S. Fafard, Phys.
    Rev. B 60, R8517 (1999).
    149. S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, S. Charbonneau, D. Leonard, R.
    Leon, P. M. Petroff and J. L. Merz, Phys. Rev. B 54, 11548 (1996).
    150. S. Raymond, X. Guo, J. L. Merz and S. Fafard, Phys. Rev. B 59, 7624 (1999).
    151. G. Medeiros-Ribeiro, F. G. Pikus, P. M. Petroff, and A. L. Efros, Phys. Rev. B 55, 1568
    (1997).
    152. B. T. Miller, W. Hansen, S. Manus, R. J. Luyken, A. Lorke, J. P. Kotthaus, S. Huant, G.
    Medeiros-Ribeiro, and P. M. Petroff, Phys. Rev. B 56, 6764 (1997).
    153. The method of analyzing the ac response of carrier being exchanged between the dots and
    the barrier is similar to those commonly employed for the defect states in semiconductorss,
    see for example, J. Bourgoin and M. Lannoo, Point Defects in Semiconductors II
    (Springer-Verlag, Berlin Heidelberg New York, 1983).
    154. See for example, D. V. Lang, J. Appl. Phys. 45, 3023 (1974).
    134
    155. X. Letartre, D. Stiévenard, M. Lannoo, and E. Barbier, J. Appl. Phys. 69, 7336 (1991).
    156. To estimate the Coulomb energies and the exchange energies between the carriers confined
    in a quantum dot with parabolic potential, we need to know the effective mass *
    e m ( *
    h m )
    and the effective confinement length e l ( h l ) of the electron (hole). The values of e l ( h l )
    can be deduced from the electron(hole)-level splitting e w h ( h w h ) of the parabolic
    potential. In our calculation, we assume an electron-hole level splitting ratio of
    1 : 2 : = h e w w h h , then we obtaine 3 . 41 = e w h meV and 7 . 20 = h w h meV, based on the
    measured interband energy splitting of 62 = D sp E meV. The effective mass values, *
    e m
    and *
    h m , were adapted from Ref. 143.

    QR CODE
    :::