| 研究生: |
林芳伃 FANG-YU LIN |
|---|---|
| 論文名稱: |
多重功能改質黏土之吸持與催化特性研究 The multiple functions of the modified clay sorption and catalytic properties |
| 指導教授: |
李俊福
JIUNN-FWU LEE |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | Koc 、BTEX 、改質土壤 、催化 、分佈介質 |
| 外文關鍵詞: | catalytic, modified clay, BTEX, Koc, partition medium |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在自然環境下通常為無機與有機污染物同時存在,一般土壤攜帶負電,故對金屬陽離子具有高親和力,但於水溶液中對有機污染物則不具吸附性;傳統土壤改質劑可增加土壤有機質含量,並增加其對有機污染物之吸持能力,但卻對金屬離子不具親和力。本研究藉由不含有機質之鈉蒙特石與四種具特殊官能基之改質劑,以靜電作用力及接枝改質方式製備含人造有機質之改質土壤,利用其特殊結構可同時吸持無機重金屬與非離子有機污染物,並探討利用吸附之重金屬催化分解有機污染物之可行性。
實驗結果發現,改質劑提供之未共用電子對與金屬離子發生錯合反應,且對Cu2+ 之親和力較高,主因為Cu2+ 電負度較大易與有機質結合。改質土壤對BTEX的吸持以土壤有機相之分佈為主,而有機吸附質的水溶解度與其分佈常數呈反比。不同改質方式之改質土壤對重金屬的飽和吸附量以及有機物之分佈作用皆為靜電作用力大於接枝方式。相同有機吸附質( BTEX )於不同改質土壤的Koc 與改質土壤的有機碳含量呈負相關性,可能導因於BTEX之分佈行為受到改質土壤之改質劑結構與疏水性分佈環境所影響。本研究使用之有機改質劑所形成的分佈介質良好且具較少極性官能基影響BTEX之分佈行為。改質土壤對重金屬為無機相吸附作用而對非離子性有機化合物(NOCs)則為有機相分佈作用,研究證實在同時吸持作用下因吸附機制不同,故沒有發生相互競爭之行為。因催化活性之不同,Pd2+金屬於20秒即可將污染物降解60%左右,顯示過渡金屬具有良好之催化效果。
In the natural environment, the soil that carry negative charge has affinity for the metal ions, but not for organic pollutants in aqueous solution. Conventional soil modifier can increase soil organic matter content and increase their sorption capacity for organic pollutants but does not have affinity for metal ions.
In this present study, a new approach to modify soil using the specific modifier is focused. By excluding organic matters sodium montmorillonite with four special functional groups as the modifier, van der waals force, grafting method for modification of soil, and using its special structure which can absorb heavy metals and nonionic organic compounds (NOCs) simultaneously were carried out. Finally, using adsorbed heavy metal modified clay, decomposed nonionic organic were adsorbed. The results showed that ligand of modifier offer lone pair to the heavy metal to form complex reaction. The affinity for Cu2+ is better, which would be because Cu2+ has more electronegativity and binding to the ligand and hence increased adsorption. In addition, alkyl chain on the soil surface can be regarded as a partition medium. Modified clay sorption of BTEX in the distribution of soil organic-based and water solubility of organic adsorbate is inversely proportional to its distribution constant. Among different modified methods, modified clay saturation adsorption capacity of heavy metals, as well as the role of the distribution of organic matter is due to the van der waals force which is greater than the grafted way. For the same organic adsorbate (BTEX) in different adsorbent’s, distribution constant of organic carbon (Koc) and modified clay organic carbon content were negatively correlated, the distribution and behavior of BTEX by the hydrophobic modification of soil affected by the environment and structure. Natural soil by the organic modifier improved the distribution of NOCs better in this study and partition medium has affected less the polar functional groups of the distribution of BTEX behavior. Modification of soil for heavy metals is the inorganic phase of the adsorption and partition of the NOCs is the role of the organic phase. Thus it is confirmed that the role of sorption at the same time is due to the different adsorption mechanism and they do not compete with each other''s. Due to different catalytic activity between Pd2+ and Cu2+, 75% of benzene was decomposed by Pd2+ within the first 20 s .It showed that transition metal has a good catalytic effect.
1. Ray R.Weil,”The Nature and Properties of Soils”,4th Ed,Pearson Prentice Hall,(2008)
2. 莊雅婷,“具特殊官能基之土壤對水溶液中有機與無機污染物吸持行為之研究”,碩士論文,國立中央大學環境工程研究所,(2011)
3. Stevenson, F.J.,”Humus Chemistry”,John Wiley & Sons, Somersel,NJ,17,(1982)
4. Felbeck, G.T., “Structural Chemistry of Soil Humic Substances.”, Adv. Agron., 327-368, (1965)
5. 郭魁士, “土壤學’’,中國書局發行,1997
6. Lambert, S.M., “Functional Relationship Between Sorption in Soil and Chemical Structure.”, J. Agric. Food Chem., 15, 572-576, (1976)
7. Chiou, C.T.; Louis, J.P.; and Virgil, H.F., “A Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds.”, Science, 206, 831-832, (1979)
8. Chiou, C.T.; Porter, P.E.; and Schmedding, D.W., “Partition Equilibriaof Nonionic Organic Compounds between Soil Organic Matter and Water.”, Environ. Sci. Technol., 17, 227-231, (1983)
9. Chiou, C.T.; Shoup, T.D.; and Porter, P.E., “Mechanistic Roles of Soil Humus and Minerals in the Sorption of Nonionic Organic Compounds from Aqueous and Organic Solution.”, Org. Geochem., 8, 9-14, (1985)
10. Lambert ,S.M., Porter, P.E., Schieferstein, R.H.,” Movement and sorption of chemicals applied to the soil.”Weed,13,185-190,1965.
11. Chiou, C.T.; Lee, J.F.; and Boyd, S.A., “The Surface Area of Soil Organic Matter.”, Environ. Sci. Technol., 24, 1164-1166, (1990)
12. Chiou, C.T., “Partition and Adsorption of Organic Contaminants in Environmental Systems”, Hoboken, N.J. : Wiley-Interscience, (2002)
13. Means, J.C.; Wood, S.G.; Hassett, J.J.; and Banwart. W.L., “Sorption of Polynuclear Aromatic Hydrocarbons by Sediments and Soils.”, Environ. Sci. Technol., 14, 1524-1528, (1980)
14. Grathwohl, P., “Influence of Organic Matter from Soils and Sediments from Various Organicon the Sorption of Some Chlorinated Aliphatic Hydrocarbons : Implications on Koc Correlations.”, Environ. Sci. Technol, 24, 1687-1693, (1990)
15. Murphy, E.M.; Zachara, J.M.; and Smith, S.C., “Influence of Mineral-Bound Humic Substances on the Sorption of Hydrophobic Organic Compounds.”, Environ. Sci. Technol., 24, 1507-1516, (1990)
16. Xing, B.; McGil, B.; and Dudas, M.J., “Sorption of α-Naphthol onto Organic Sorbents Varying in Polarity and Aromaticity.”, Chemosphere, 28, 145-153, (1994)
17. Ruthven, D. M., “Principles of Adsorption and Adsorption Process”, John Wiley & Sons (1984).
18. Brunauer, S., L. S. Deming, W. S. Deming, and E. Teller, J. Am. Chem.Soc., 62, pp.1723 (1940).
19. IUPAC Manual of Symbols and Terminology, Appendix 2, Pt. 1, Colloid and Surface Chemistry, Pure Appl. Chem. 31, 578 (1972).
20. 楊逸禎,“土壤無機相對有機污染物吸附特性之研究”,碩士論文,國立中央大學環境工程研究所,(2007)
21. Boyd ,S. A.;Lee ,J.F.;Mortland ,M.M. , “Attenuating Organic Contaminant Obility by Soil Modification.”, Nature, 333, 345-347,(1988)
22. Potgieter, J. H.; Potgieter-Vermaak, S. S.; and Kalibantonga, P. D., ” Heavy Metals Removal from Solution by Palygorskite clay.”, Minerals Engineering, 19, 463-470, (2006)
23. He, C., Zhang, F., Yue, L., Shang, X., Chen, J., Hao, Z.,” Nanometric palladium confined in mesoporous silica as efficient catalysts for toluene oxidation at low temperature”, Applied Catalysis B, 111– 112, 46– 57, (2012)
24. Bruce, T. “Process to remove protein and other biomolecule from tobacco extract or slurry”, US patent 20060037620, Feb 23,( 2006)
25. Liu, C., Tang, T., Huang, B., “Zirconocene catalyst well spaced inside modified montmorillonite for ethylene polymerization: role of pretreatment and modification of montmorillonite in tailoring polymer properties”, Journal of Catalysis 221, 162–169.( 2004)
26. Sayilkan, H., Erdemoglu, S., Sener, S., Ayilkan, F., Akarsu, M., Erdemoglu, M.,” Surface modification of pyrophyllite with amino silane coupling agent for the removal of 4-nitrophenol from aqueous solutions”. Journal of Colloid and Interface Science 273, 530–538. (2004)
27. Pinnavaia, T.J., Tzou, M.S., Landau, S.D., Raythatha, R.H.,” On the pillaring and delamination of smectite clay catalysts by polyoxo cations of aluminum”. Journal of Molecular Catalysis 27, 195–212(1984)
28. Occelli, M.L., Lynch, J., Senders, J.V., “TEM analysis of pillared and delaminated hectorite catalysts”. Journal Catalysis 107, 557–565(1987)
29. Donald L.Sparks著,王明光譯, “環境土壤化學’’,五南圖書,2000。
30. 黃怡禎, “礦物學”,地球科學文教基金會,520-535,2000。
31. Gładysz-Płaska, A., Majdan, M., Pikus, S., Sternik, D.,” Simultaneous adsorption of chromium(VI) and phenol on natural red clay modified by HDTMA”,Chemical Engineering Journal ,179 ,140– 150, (2012)
32. Huang, Y., Ma, X., Liang, G., Yan, Y., Wang, S.,” Adsorption behavior of Cr(VI) on organic-modified rectorite”, Chemical Engineering Journal, 138 ,187–193, (2008)
33. Liu, J., Feng, X., Fryxell, G. E., Wang, L. Q., Kim. A. Y. and Gong, M. L., “Hybrid Mesoporous Materials with Functionalized Monolayers”, Adv. Mater., 10, 161-165 (1998).
34. Guimarães , M.F. , Virgínia Sampaio T. Ciminelli , Wander Luiz Vasconcelos,” Smectite organofunctionalized with thiol groups for adsorption of heavy metal ions”, Applied Clay Science 42 ,410–414, (2009)
35. Mercier, L., J.Pinnavaia, T.,“A functionalized porous clay heterostructure for heavy metal ion (Hg2+) trapping“,Microporous and Mesoporous Materials 20, 101-106(1998)
36. Georig, A.; Schierz, A.; Trommler, U.; Horwitz, C.P.; Collins, T.J.; and Kopinke, F.D., “Humic Acid Modified Fenton Reagent for Enhancement of the Working pH Range.”, Applied Catalysis B:Environmental, 72, 26-36, (2007)
37. Gabriel, J.; Shah, V.; Nesmerak, K.; Baldrian, P.; and Nerud, F., “Degradation of Polycyclic Aromatic Hydrocarbons by the Copper(II)-Hydrogen Peroxide System.”, Folia Microbiologica, 45, 573-575, (2000)
38. Baldrian, P.; Cajthaml, T.; Merhautová, V.; Gabriel, J.; Nerud, F.; Stopka, P.; Hruby´, M.; and Benesˇ, M.J., “Degradation of Polycyclic Aromatic Hydrocarbons by Hydrogen Peroxide Catalyzed by Heterogeneous Polymeric Metal Chelates.”, Applied Catalysis B: Environmental, 59, 267-274, (2005)
39. Gabriel, J.; Baldrian, P.; Verma, P.; Cajthaml, T.; Merhautová, V. and Eichlerová, I.; Stoytchev, I.; Trnka, T.; Stopka, P.; and Nerud, F., “Degradation of BTEX and PAHs by Co(II) and Cu(II)-Based Radical-Generating Systems.”, Applied Catalysis B:Environmental, 51, 159-164, (2004)
40. Lu, C.Y.; Tseng, H.H.; Wey, M.Y.; Liu, L.Y.; Kuo, J.H.; and Chuang, K.H., “Al2O3-Supported Cu-Co Bimetallic Catalysts Prepared with Polyol Process for Removal of BTEX and PAH in the Incineration Flue Gas.”, Fuel, 88, 340–347, (2009)
41. Nerud, F.; Baldrian, P.; Gabriel, J.; and Ogbeifun, D., “Decolorization of Synthetic Dyes by the Fenton Reagent and the Cu/Pyridine/H2O2 System.”, Chemosphere, 44, 957-961, (2001)
42. Shah, V.; Verma, P.; Stopka, P.; Gabriel, J.; Baldrian, P.; and Nerud, F., “Decolorization of Dyes with Copper(II)/Organic Acid/Hydrogen Peroxide Systems.”, Applied Catalysis B: Environmental, 46, 287–292, (2003)
43. Verma, P.; Shah, V.; Baldrian, P.; Gabriel, J.; Stopka, P.; Trnka, T.; and Nerud, F., “Decolorization of Synthetic Dyes Using a Copper Complex with Glucaric Acid.”, Chemosphere, 54 , 291–295, (2004)
44. 謝育甄,“多孔性吸附介質之表面改質及其對有害重金屬吸附之研究”,碩士論文,國立中央大學環境工程研究所,(2011)
45. Wang, X.S.; and Qin, Y., “Equilibrium Sorption Isotherms for of Cu2+ on Rice Bran.”, Process Biochemistry, 40, 677-680(2005)
46. Wu, J.K.; and Hsu, Y.S., “Electrochemical Corrosion of Zinc in Sodium Chlorite.”, Journal of Materials Science, 21, 3475-3478, (1986)
47. Weast, R.C.; Astle, M.J.; and Beyer, W.H., “CRC Handbook of CHEMISTRY and PHYSICS”, 68th Ed, CRC Press, Inc., Boca Raton, Florida, (1988)
48. Shanmugharaj, A.M., Rhee, K.Y., Ryu, S.H.,” Influence of dispersing medium on grafting of aminopropyltriethoxysilane in swelling clay materials”. Journal of Colloid and Interface Science 298, 854–859(2006)
49. Bois, L., Bonhommé, A., Ribes, A., Pais, B., Raffin, G., Tessier, F., “Functionalized silica for heavy metal ions adsorption”, Colloids and Surfaces 221, 221–230(2003)
50. Fonseca, M.G., Airoldi, C., “Mercaptopropyl magnesium phyllosilicate — thermodynamic data on the interaction with divalent cations in aqueous solution”, Thermochimica Acta 359, 1–9( 2000)
51. Coates, J., Interpretation of infrared spectra, a practical approach. In: Meyers, A. (Ed.), Encyclopedia of Analytical Chemistry. John Wiley & Sons Ltd., Chichester, 10815–10837(2000)
52. Guimarães, A., Virgínia Sampaio T. Ciminelli , Wander Luiz Vasconcelos,” Smectite organofunctionalized with thiol groups for adsorption of heavy metal ions”, Applied Clay Science,42 , 410–414 (2009).
53. Saygideger, S.; Gulnaz, O.; Istifli, E.S.; Yuxel, N.,” Adsorption of Cd( Ⅱ ), Cu( Ⅱ ) and Ni( Ⅱ ) ions by Lemna minor L effect of physicochemical environment”, J. Hazard. Mater. 126, 96-104(2005)
54. Trivedi, P.; Axe, L.; and Dyer, J., “Adsorption of Matel Ions onto Goethite : Singe–Adsorbate and Competitive Systems.”, A: Physicochemical and Engineering Aspects, 191, 107–121, (2001)
55. M. Okazaki, K. Takamidoh , I .Yamane, Soil Sci. Plant Nutr.32 (4) 523-533(1986)
56. Ahrland, S.; Chatt, j.; Davies, N. R., Chem. Soc. Review 12, 265(1958)
57. Fontes, M.P.F.; and Gomes, P.C., “Simultaneous Competitive Adsorption of Heavy Metals by the Mineral Matrix of Tropical Soils.”, Applied Geochemistry, 18, 795–804, (2003)
58. Abollion, O.; Aceto, M.; Malandrino, M.; Sarzanini, C.; and Mentasti, E., “Adsorption of Heavy Metals on Na-montmorillonite. Effect of pH and Organic Substances.”, Water Research, 37, 1619-1627, (2003)
59. Lin, S.H.; and Juang, R.S., “Heavy Metal Removal from Water by Sorption using Surfactant-Modified Montmorillonite.”, Journal of Hazardous Materials, 92, 315-326, (2002)
60. Abbas H. Sulaymon, Balasim A. Abid, Jenan A. Al-Najar,” Removal of lead copper chromium and cobalt ions onto granular activated carbon in batch and fixed-bed adsorbers”, Chemical Engineering Journal 155 , 647–653(2009)
61. E. Erdem , N. Karapinar , R. Donat,” The removal of heavy metal cations by natural zeolites”, Journal of Colloid and Interface Science 280, 309–314(2004)
62. Xua, F., Lianga, X., Lina, B., Schrammb,K.W., Kettrupb, A., “Estimation of soil organic partition coefficients: from retention factors measured by soil column chromatography with water as eluent” Journal of Chromatography A, 968, 7–16(2002)
63. Lee, J.F.; Chang, Y.T.; Chao, H.P.; Huang, H.C.; and Hsu, M.H., “Organic Compound Distribution between Nonionic Surfactant Solution and Natural Solids : Applicability of a Solution Property Parameter.”, Journal of Hazardous Materials, 129, 282-289 (2006)
64. C. He, P. Li, J. Cheng, H.L. Wang, J.J. Li, Q. Li, Z.P. Hao, “Synthesis and characterization of Pd/ZSM-5/MCM-48 biporous catalysts with superior activity for benzene oxidation”,Appl. Catal. A Gen. 382, 167–175(2010)
65. T. Garcia, B. Solsona, D.M. Murphy, K.L. Antcliff, S.H. Taylor,” Deep oxidation of light alkanes over titania-supported palladium/vanadium catalysts”, J. Catal. 229, 1–11(2005)
66. Garcia T, Solsona B, M. Murphy D, Karen L. Antcliff, Stuart H. Taylor,” Deep oxidation of light alkanes over titania-supported palladium/vanadium catalysts”, Journal of Catalysis 229, 1–11(2005)