跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳馨灤
Sin- luan Chen
論文名稱: 考量跳躍模型下-碳權衍生性商品之評價
Pricing CO2 Emission Allowance DerivativesFollowing Tempered Stable GARCH Models
指導教授: 楊曉文
Sharon S.Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融學系
Department of Finance
畢業學年度: 99
語文別: 中文
論文頁數: 38
中文關鍵詞: 碳權Levy跳躍模型
外文關鍵詞: emission allowance, levy, jump model
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去實證研究中發現,GARCH模型殘差項服從常態分配之假設常常遭到拒絕,因此本篇論文利用殘差項服從調和穩態過程中的基本調和穩態過程以及瞬間調和穩態過程之GARCH模型來做為碳權現貨價格之動態過程。運用Bluenext交易所提供之EUAs碳權現貨價格資料,本研究發現殘差項服從瞬間調和穩態過程之GARCH模型具有極佳的配適能力。
    此外,透過數值分析可知,假設EUAs碳權現貨價格動態過程為傳統的GARCH模型將高估EUAs碳權期貨選擇權之價格,且不論運用基本調和穩態過程或是瞬間調和穩態過程,EUAs碳權期貨選擇權之價格差異不大,故當殘差項服從調和穩態過程之GARCH模型,模型風險較低。


    Empirical studies show that the hypothesis of normal distribution of residuals was often rejected. Therefore, this paper presents GARCH models with an infinitely divisible distributed innovation, referred to as the classical tempered stable (CTS) GARCH model and the rapidly decreasing tempered stable (RDTS) GARCH model to catch the dynamic process of CO2 emission spot price.
    This paper compares the performance of normal-GARCH, stable-GARCH, CTS-GARCH, and RDTS-GARCH models using EUAs data obtained from Bluenext environmental exchange and finds that RDTS-GARCH model has a better fitness than others.
    Our empirical results show the NORMAL-GARCH model tends to overestimate the price of EUAs future options. But the results are virtually similar by using either CTS-GARCH model or RDTS-GARCH model, which means that the model risk of tempered stable-GARCH model is lower.

    摘 要 Abstract 誌 謝 目 錄 圖目錄 表目錄 一、緒論 二、文獻回顧 三、碳權資料分析 3-1敘述統計 3-2模型介紹 3-2-1基本調和穩態分配 3-2-2瞬間調和穩態分配 四、碳權動態模型之建構 4-1 殘差項服從調和穩態分配之GARCH模型隨機過程 4-2 模型參數估計 4-3 模型配適比較 五、EUAs期貨選擇權之評價 5-1 風險中立測度轉換 5-2 EUAs期貨選擇權定價 六、結論 參考文獻 附錄

    [1] 王昭文,「考量房價跳躍風險下房屋抵押貸款保險之評價」,風險管理學報,第十二卷,第一期,2010 年5 月
    [2] 羅時芳,「全球碳市場趨勢及對我國金融產業之啟示」,證券櫃檯月刊,141期,頁91-103,2009年
    [3] O.E. Barndorff and Shephard N.,“Normal modified stable processes”,Economics Series Working Papers from University of Oxford, Department of Economics, Vol.72, 2001
    [4] M.L. Bianchi, S.T. Rachev, Y.S. Kim and F.J. Fabozzi,“Tempered infinitely divisible distributions and processes”, Technical report, 2008
    [5] T. Bollerslev,“Generalized autoregressive conditional heteroskedasticity”,Journal of Econometrics, Vol.31, pp.307-327, 1986
    [6] P.D Carr and Madan,“Option Valuation Using the Fast Fourier Transform”,Journal of Computational Finance, Vol.2, pp. 61-73,1998
    [7] P. Carr, H. Geman, D. Madan, and M. Yor, The Fine Structure of Asset Returns: An Empirical Investigation, Journal of Business, Vol.75, No.2, pp.305-332,2002
    [8] R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman &Hall / CRC,2004
    [9] J.C. Duan , “The GARCH option pricing model”, Mathematical Finance, Vol.5, No.1, pp.13-32,1995
    [10] J.C. Duan and J.G. Simonato , “Empirical martingale simulation for asset prices”, Management Science, Vol.44, No.9, pp.1218-1233,1998
    [11] R. Engle,“ Autoregressive conditional heteroskedasticity with estimates of the variance of united kingdom inflation”, Econometrica, Vol.50, pp.987-1007,1982
    [12] G. Daskalakis, D. Psychoyios and R.N. Markellos , “Modeling CO2 Emission Allowance Prices and Derivatives: Evidence from the European Trading Scheme”,Athens University of Economics and Business, 2007
    [13] H.P Chao and R. Wilson, “Option value of emission allowances”,Journal of Regulatory Economics, Vol.5, pp.233-249,1993
    [14] K.E. Mulle, “Computing the confluent hypergeometric function ,M(a,b,x) In press”, Numberical mathematics, 2001
    [15] Y.S. Kim and J. H. Lee,“The relative entropy in CGMY processes and its applications to finance”, Mathematical Methods of Operations Research, Vol.66, No.2, pp.327-338, 2006
    [16] Y.S. Kim, S.T. Rachev, M.L. Bianchi and F.J. Fabozzi, “Financial market models with L’evy processes and time-varying volatility”, Journal of Banking and Finance, Vol.32, pp.1363-1378, 2008a
    [17] Y.S. Kim, S.T. Rachev, M.L. Bianchi and F.J. Fabozzi, “ Tempered stable and tempered infinitely divisible GARCH models”, 2010
    [18] I. Koponen, “Analytic approach to the problem of convergence of truncated L’evy flights towards the Gaussian stochastic process”, Physical Review E, Vol.52, pp.1197-1199, 1995
    [19] S.G. Kou, “A Jump Diffusion Model for Option Pricing”, Management Science, Vol.48, pp.1086-1101, 2002
    [21] D.B. Madan, P. Carr and E. Chang, “The Variance Gamma Process and Option Pricing”, European Finance Review, Vol.2, pp.79-105,1998
    [22] D.B. Madan and E. Seneta, “The VG model for Share Market Returns”, Journal of Business, Vol.63, pp.511-524,1990
    [23] C. Menn and S. T. Rachev, “Smoothly truncated stable distributions, GARCH-models, and option pricing”, Technical report, 2005b
    [24] R.C. Merton, “Option pricing when underlying stock returns are Discontinuous”, Journal of Financial Economics, Vol.3, pp.125-144, 1976
    [25] M.S. Paolella and L. Taschini, “An econometric analysis of emission allowances price”, Journal of Banking and Finance, Vol.32, pp.2022-2032, 2008
    [26] P. Iseneggera and R.V. Wyssb , “The Valuation of Derivatives on Carbon Emission Certificates – a GARCH Approach”, Swiss CFA Society, 2009
    [27] J. Poirot and P. Tankov, “Montecarlo option pricing for tempered stable(CGMY) processes ”, Asia-Pacific Finan Markets, Vol.13, pp. 327-344, 2006
    [28] R. F. Kosobud, H.H. Stokes, C.D. Tallarico, B.L. Scott , “Valuing Tradable Private Rights to Pollute the Public''s Air”, Review of Accounting & Finance; Vol.4, No.1, ABI/INFORM Global pg. 50, 2005
    [29] J. Rosi’nski, “Tempering stable processes”, Stochastic Processes and Their Applications, Vol.117, No.6, pp.677-707, 2077
    [30] K. Sato, “L’evy Processes and Infinitely Divisible Distributions”, Cambridge University Press, 1999
    [31] J. Seifert, M.U. Homburg, M. Wagner, “Dynamic behavior of CO2 spot prices”. Journal of Environmental Economics and Management , Vol.56, pp.180-194, 2008
    [32] S. Mittnik, S.T. Rachev, T. Doganoglu, D. Chenyao , “Maximum likelihood estimation of stable paretian models”, Mathematical and Computer Modeling , Vol.29 , pp.275-293, 1999
    [33] D. Zajdenweber, “The Valuation of Catastrophe Reinsurance Linked Securities”, American Risk and Insurance Association Meeting, Conference Paper, 1998
    [34] Y. Miyahara, A. Novikov , “Geometric Levy Process Pricing Model”, Research Paper Series from Quantitative Finance Research Centre, University of Technology, Sydney, No.66

    QR CODE
    :::