跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖崑傑
Kun-Chieh Liao
論文名稱: 超臨界二氧化碳在微通道氣體冷卻器內的熱傳及壓降特性研究
指導教授: 楊建裕
Chien-Yuh Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 103
中文關鍵詞: 二氧化碳超臨界微通道熱傳壓降
外文關鍵詞: carbon dioxide, supercritical, microchannel, heat transfer, pressure drop
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以實驗的方法分析超臨界二氧化碳,在0.5 mm×0.5 mm多管並排方形微通道中穿越超臨界區域冷卻的熱傳及壓降特性。結果顯示在離臨界點遠處,壓降與傳統經驗式的預估值差異在3.5 %以內;在接近臨界點時,與以局部性質估算值有30 %偏差,但若以入出口溫度範圍內積分後的性質代入計算,與傳統經驗式預測的差異值可降至10 %以內。
    在穿越超臨界區域過程中,靠近臨界點時二氧化碳性質變化劇烈,因此計算穿越超臨界過程的熱傳係數時,所使用的氣體性質非常重要,以冷媒入出口之間溫度積分性質計算所得之熱傳係數會比直接使用入出口平均溫對應之性質所得之熱傳係數更加準確。


    This thesis presents the experimental data for the heat transfer and pressure drop characteristics during the gas cooling process of carbon dioxide in a 37-channel horizontal extruded aluminum micro-tube, each channel with inside dimension of 0.5mm x 0.5mm.
    The results showed that data at the distant from critical point the pressure drop agree very well with those calculated by the traditional correlation using local property within a deviation of 3.5 %, however the result deviates up to 30 % close to critical points, when the integration property in the temperature range of inlet and outlet is used, the deviation closing to the critical point can be reduced to be within 10 %.
    Crossing the supercritical region, the carbon dioxide gas property changes very dramatically, so the used property for heat transfer coefficient calculation near the critical point region is very important, the heat transfer coefficient calculated by using the integration property in the temperature range of inlet and outlet is better than that calculated by using the property of average temperature of inlet and outlet.

    摘要 I Abstract II 致謝 III 表目錄 VI 圖目錄 VII 符號說明 IX 第一章 前言 1 第二章 文獻回顧 11 第三章 實驗方法 41 3.1簡介 41 3.2實驗系統 43 3.2.1 測試段 45 3.2.2 冷媒循環系統 47 3.2.3 冷卻水循環 47 3.3 實驗設備 48 3.3.1 溫度量測 48 3.3.2 壓力量測 48 3.3.3 差壓量測 49 3.3.4 流量量測 50 3.3.5 其他設備 51 3.4 實驗步驟 52 3.5 資料換算 53 3.5.1 熱傳資料換算 53 3.5.2 壓降資料換算 55 3.6 Modified Wilson Plot method 57 第四章 結果與討論 63 第五章 結論 81 參考文獻 82 附錄 86

    Wang, C.C., Hafner, A., Kuo, C.S., and Hsieh, W.D., 2012, “An overview of the effect of lubricant on the heat transfer performance on conventional refrigerants and natural refrigerant R-744”, Renewable and Sustainable Energy Reviews, vol. 16, pp. 5071-5086.
    Baskov, V.L., Kuraeva, I.V., and Protopopov, V.S., 1977, “Heat transfer with the turbulent flow of a liquid under supercritical pressure in tubes under cooling conditions”, High Temperature, vol. 15, pp. 81-86.
    Bringer, R.P. and Smith, J.M., 1957, “Heat transfer in critical region”, AIChE Journal, vol. 3, pp. 49-55.
    Dang, C., and Hihara, E., 2004, “In-tube cooling heat transfer of supercritical carbon dioxide. Part 1. Experimental measuremen”, International Journal of Refrigeration, vol. 27, pp. 736-747.
    Dang, C., and Hihara, E., 2004, “In-tube cooling heat transfer of supercritical carbon dioxide. Part 2. Comparison of numerical calculation with different turbulence models”, International Journal of Refrigeration, vol. 27, pp. 748-760.
    Dittus, F. W., and Boelter, L. M. K., 1930, “Heat Transfer in Automobile Radiators of the Tubular Type,” University of California, Berkeley, Publications on Engineering, Vol. 2, No. 13, pp. 443-461.
    Fang, X., and Xu, Y., 2011, “Modified heat transfer equation for in-tube supercritical CO2 cooling,” Applied Thermal Engineering, vol. 31, pp. 3036-3042.
    Fang, X., 1999, “Modeling and Analysis of Gas Coolers, ACRC CR-16. Department of Mechanical and Industrial Engineering,” University of Illinois at Urbana-Champaign, USA.
    Gnielinski, V., 1976, “New equation for heat and mass transfer in turbulent pipe and channel flow,” International Chemical Engineering, vol. 16, pp. 359-368.
    Huai, H., Koyama, S., 2007, “Heat Transfer Characteristics of Supercritical CO2 Flow in Small-Channeled Structures,” Experimental Heat Transfer, vol. 20,pp. 19-33.
    Huai, X.L., Koyama, S., Zhao T.S., 2005, “An experimental study of flowand heat transfer of supercritical carbon dioxide in multi-port mini channels under cooling conditions,” Chemical Enhineering Science, vol, 60, pp. 3337-3345.
    Incropera, F. P. and DeWitt, D. P., 2007, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York.
    Krasnoshchekov, E.A., Kuraeva, I.V., and Protopopov, V.S., 1969 “Local heat transfer of carbon dioxide under supercritical pressure under cooling conditions”, Teplofizika Vysokikh Temperatur, vol. 7, pp. 922-930.
    Kuang, G., 2006, “Heat transfer and mechanical design analysis of supercritical gas cooling process of CO2 in microchannels”, Ch. 3. PhD dissertation, Department of Mechanical Enginnering, University of Maryland.
    Kuang G., 2008, “Semi-empircial correlation of gas cooling heat transfer of supercritical carbon dioxide in microchannels”, HVAC & Research, vol. 14, pp. 861-871.
    Kays, W.M. and London, A.L., 1984, “ComPact Heat Exchangers,” 3rded. McGraw-Hill, New York.
    Liao, S.M. and Zhao, T.S., 2001, “An experimental investigation of forced convective heat transfer from supercritical carbon dioxide in horizontal mini/micro channels,” 35th National Heat Transfer Conference.
    Liao, S.M. and Zhao, T.S., 2002, “Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini/micro channels,” Journal of Heats Transfer, vol. 124, pp. 413-420.
    Liao, S.M. and Zhao, T.S., 2002, “An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes,” International Journal of Heat and Mass Transfer, vol. 45, pp. 5025-5034.
    Lorentzn, G. and Petersen, J., 1993, “A New, Efficient and Environmentally Benign System for Car Air-conditioning”, International Journal of Refrigeration, Vol. 16, No. 1, pp. 4-12.
    Oh, H.K., Son, C.H., 2010, “New correlation to predict the heat transfer coefficient intube cooling of supercritical CO2 in horizontal macro-tubes,” Experimental Thermal and Fluid Science, vol. 34, pp. 1230-1241.
    Olson, D.A., and Allen, D., 1998, “Heat transfer in turbulent supercritical carbon dioxide flowing in a heated horizontal tube,” NISTIR 6234.
    Petrov, N.E., Popov V.N., 1985, “Heat transfer and resistance of carbon dioxide beingcooled in the supercritical region,” Thermal Engineering, vol. 32, pp. 131-.
    Petrov, N.E., Popov, V.N., 1988, “Heat transfer and hydraulic resistance with turbulent flow in a tube of water under supercritical parameters of state,” Thermal Engineering, vol. 35, pp. 577-580.
    Petukhov, B.S., and Kirillov, V.V., 1958, “On heat exchange at turbulent flow of liquid in pipes,” Teploenergetika, vol. 4 ,pp. 63-68.
    Pitla, S.S., Groll, E.A., Robinson, D.M., and Ramadhyani, S., 1998, “Heat transfer from supercritical carbon dioxide in tube flow: a critical review,” HVAC&R Research, vol. 4, pp. 281-301.
    Pitla, S.S., Groll, E.A., and Ramadhyani, S., 2001, “Convective heat transfer from in-tube flow of turbulent supercritical carbon dioxide: part 1-Numerical analysis,” HVAC&R Research, vol. 7, pp. 345-366.
    Pitla, S.S., Groll, E.A., and Ramadhyani, S., 2001, “Convective heat transfer from in-tube flow of turbulent supercritical carbon dioxide: part 2-experimental data and numerical predictions,” HVAC&R Research, vol. 7, pp. 367-382.
    Pitla, S.S., Groll, E.A., and Ramadhyani, S., 2002, “New correlation to predict the heat transfer coefficient during in-tube cooling of turbulent supercritical CO2,” International Journal of Refrigeration, vol. 25, pp. 887-895.
    REFPROP. NIST Standard Reference Database 23, Version 8.0
    Riffat, S.B., Afonso, C.F., Oliveira, A.C., and Reay, D.A., 1997, “Natural refrigerants for refrigeration and air-conditioning systems”, Applied Thermal Engineering, vol. 17, pp. 33-42.
    SINTEF, 2009, “CO2 Heat Pump Design Program”, SINTEF, Norway
    Son, C.H., and Park, S.J., 2006, “An experimental study on heat transfer and pressure drop characteristics of carbon dioxide during gas cooling process in a horizontal tube,” International Journal of Refrigeration, vol. 29, pp. 539-546.
    Tanaka, H., Nishiwaki, N., and Hirata, M., 1967 “Turbulent Heat Transfer to Supercritical Carbon dioxide,” Semi-International Symposium, Japan Society of Mechanical Engineers, Tokyo, Japan.
    Wang, C.C., Hafner, A., Kuo, C.S. and Hsieh, W.D., 2012 “An overview of the effect of lubricant on the heat transfer performance on conventional refrigerants and natural refrigerant R-744”, Renewable and Sistainable Energy Reviews, vol. 26, pp. 5071-5086.
    Webb, R. L., 1992, Principles of Enhanced Heat Transfer, John Wiley & Sons, New York.
    Yoon, S.H., Kim, J.H., Hwang, Y.W., Kim, M.S., Min, K., and Kim, Y., 2003, “Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region,” International Journal of Refrigeration, vol. 26, pp. 857-864.
    王啟川,2007,熱交換器設計,五南圖書出版有限公司,台北。
    余培煜,2008,”二氧化碳冷媒應用現況介紹”,冷凍空調&熱交換,三月,18-23。
    張鈺炯、楊錞忠,2007,”二氧化碳冷媒應用技術介紹”,冷凍與空調,二月,48-56。
    郭誠恕、謝文德、鄭維嶽,2012,”二氧化碳商用冷藏設備開發及其性能研究”,冷凍空調&能源科技,十月,21-30。

    QR CODE
    :::