| 研究生: |
李雪茹 HSUEH-JU LI |
|---|---|
| 論文名稱: |
加壓型SOFC陰極半電池實驗研究 An Experimental Investigation of the Cathode Half-Cells for Pressurized SOFCs |
| 指導教授: | 施聖洋 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 加壓鈕扣型SOFC 、阻抗頻譜 、陰極氧還原反應 、壓力效應 |
| 外文關鍵詞: | high-pressure button solid oxide fuel cell, electrochemical impedance spectroscopy, cathode oxygen reduction reaction, pressurized effect |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用本實驗室已建立之高壓雙腔體固態氧化物燃料電池(solid oxide fuel cell, SOFC)性能量測平台,並搭配一最近設計之加壓鈕扣型SOFC實驗載體,分別針對不同系統壓力範圍p = 1~5atm、不同操作溫度範圍T = 700℃~850℃和不同陰極氧濃度範圍[O2] = 4.20%~100%,進行一系列鈕扣型陰極對稱型電池之電化學阻抗頻譜量測與分析,目的為探討壓力、溫度和氧濃度效應對陰極氧還原反應機制之影響。本實驗所採用之陰極電池材料為LSM/LSM-GDC,具雙層對稱結構,我們以固定體積流率(0.5slpm)來進行所有實驗。實驗結果顯示,在任一固定溫度和氧濃度條件下,提高系統壓力有助於降低陰極氧還原反應阻抗,其中又以p = 1~3atm最為顯著,而p = 3~5atm 漸趨平緩,這是因為在常壓時,開始加壓會使陰極氧濃度較有效地增加,而在系統壓力已達3atm時,氧分子與陰極電極觸媒接觸面積漸趨飽和,故壓力效應會漸趨平緩。此外,亦發現加壓效應在較低溫度時比在高溫時來得顯著,即在T = 700℃時壓力效應較在T = 850℃時來得顯著。我們發現歐姆阻抗幾乎不隨壓力變化而改變,但提高操作溫度可使歐姆阻抗與極化阻抗同時下降,進而使交換電流密度增加,促使氧還原反應速率有效地提升。是故,溫度效應對陰極氧還原反應比壓力效應來得顯著。有關氧濃度效應方面,在任一固定壓力和溫度條件下,提升氧濃度可使氧分壓增加,使更多氧分子與陰極觸媒接觸反應,因此可有效降低氧還原反應阻抗,提升電池性能。另外,加壓效應於低氧濃度條件下比在高氧濃度條件下會更加顯著。
經由陰極極化阻抗(RP)與氧分壓(p_(O_2 ))之相依性分析,即R_P^(-1)∝p_(O_2)^n,其中n為冪次法則之指數,我們找到在常壓條件下,T = 700℃和750℃之n = 0.370~0.379,經由文獻資料比對歸納分析後,可推斷其反應速率決定步驟應為氧原子沿電極與電解質界面擴散之過程;在T = 850℃,n = 0.278,其反應速率決定步驟則為氧離子於LSM表面擴散至三相邊界層的過程。至於在加壓條件下,當T = 700℃,n = 0.614,其相對應之反應速率決定步驟應為氧離子在LSM表面擴散的過程;而當T = 750℃~850℃,n = 0.455~0.548,此指數值範圍則為吸附氧分解的過程。本研究成果,對了解加壓SOFC陰極半電池之還原反應過程機制,有重要之助益。並且,本團隊所建立之加壓鈕扣型電池測試平台,亦可針對不同陰極材料作性能量測分析,可作為開發新型SOFC陰極材料之有用量測平台。
This thesis applies a recently-designed pressurized button cell setup in an already established high-pressure double-chamber solid oxide fuel cell (SOFC) testing platform to measure electrochemical impedance spectra (EIS) of a symmetric cathode button cell with a symmetric bi-layer structure made of LSM/LSM-GDC materials. In order to understand effects of system pressure (p) and temperature (T) as well as the influence of oxygen concentration ([O2]) on the oxygen reduction reaction mechanism of the cathode, we measure EIS data over a range of p from 1atm to 5atm, a range of T from 700℃ to 850℃, and a wide range of [O2] varying from 4.2% to 100% by changing only one parameter at a time while keeping the other two parameters fixed. All experiments studied here use a fixed flow rate of 0.5slpm by diluting with nitrogen except for the case of [O2] = 100%. Results show that the cathode’s oxygen reduction reaction resistance decreases with increasing p at any fixed T and [O2]. Such resistance decrease due to the effect of pressurization is more significant from p = 1atm to 3atm and then becomes more gradually from p = 3atm to 5atm. This is because pressurization starting from normal pressure can be more effectively to increase the cathode oxygen concentration and thus increase the contact area between oxygen molecules and the cathodic catalyst, while the constant areas tends to be saturated at higher p. Besides, the pressure effect is more profound at lower T than at higher T. It is found that the ohmic resistance is almost unchanged with pressurization, but it decreases with increasing T, so as to the polarization resistance. This leads to an increase of the exchange current density and thus the oxygen reduction reaction rate can be effectively increased. It is concluded that the effect of T is more significant than the effect of p on the cathode oxygen reduction reaction. As to the effect of [O2], increasing [O2] can increase the oxygen partial pressure, allowing more oxygen molecules to react with the cathodic catalyst at any fixed p and T and thus, the oxygen reduction reaction resistance can be reduced and the cathode cell performance can be increased. Further, the pressure effect is found to be more effective at lower [O2].
By analyzing the dependence of the cathode polarization resistance (RP) with oxygen partial pressure (p_(O_2 )) as a form of R_P^(-1)∝p_(O_2)^n where n is the power law exponent, the rate-determining steps in the cathode can be obtained. At p = 1atm, values of n = 0.370~ 0.379 at T = 700℃ and T = 750℃, the rate-determining steps should be the atomic oxygen diffusion process along the interface between the electrode and the electrolyte; at higher T = 850℃, n = 0.278 and the oxygen ion diffusion process from the surface of LSM to the triple-phase boundary should be the rate-determining step based on the comparison with available literature data. In the cases of pressurization, the corresponding rate-determining step is the oxygen ion diffusion process of the LSM surface at T = 700℃where n = 0.614 and the dissociated oxygen adsorption process when T = 750℃~T = 850℃where values of n = 0.455~0.548. These electrochemical results are important to our understanding of the mechanism of oxygen reduction reaction in the cathode under pressurization conditions. Moreover, the current pressurized button cell test rig is a useful tool to test and to develop the new cathode materials.
參考文獻
[1] Gregor, H., Fuel cell technology hand book, CRC Press, Germany, 2003.
[2] James, L., Andrew, D., Fuel Cell Systems Explained 2nd, U.K., 2003.
[3] Mark C. Williams, Joseph Strakey, Wayne Sudoval , U.S. DOE fossil energy fuel cells program, Journal of Power Sources, Vol. 159, pp. 1241–1247, 2006.
[4] Mark C. Williams, Joseph P. Strakey and Wayne A. Surdoval, U.S. Department of Energy’s Solid Oxide Fuel Cells:Technical Advances, International Journal of Applied Ceramic Technology, Vol. 2 (4), pp. 295-300, 2005.
[5] 方良吉等編著,2010年能源產業技術白皮書,第一版,經濟部能源局,台北市,民國九十九年。
[6] Park, S., Kim, T.S., Comparison between pressurized design and ambient pressure design of hybrid solid oxide fuel cell-gas turbine system, J. Power Sources, Vol. 163, pp. 490-499, 2006.
[7] 張軒維,加壓型固態氧化物燃料電池型能與阻抗之定性量測與分析,碩士論文,國立中央大學,2011。
[8] 鄭浩昇,加壓型固態氧化物燃料電池量測與分析:壓力、溫度與質量流率效應,碩士論文,國立中央大學,2012。
[9] S.C. Singhal,“Advances in solid oxide fuel cell technology”, Solid State Ionics, Vol. 135, pp. 305-313, 2000.
[10] Jae-Dong Kim, Goo-Dae Kim, Ji-Woong Moon, Yong-il Park, Weon-Hae Lee, Koichi Kobayashi, Masayuki Nagai, Chang-Eun Kim, Characterization of LSM–YSZ composite electrode by ac impedance spectroscopy, Solid State Ionics, Vol. 143, pp. 379-389, 2001.
[11] M.J. Escudero, A. Aguadero, J.A. Alonso, L. Daza, A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy, Journal of Electroanalytical Chemistry , Vol. 611, pp. 107-116, 2007.
[12] J. Fleig, Solid oxide fuel cell cathodes:Polarization Mechanisms and Modeling of the Electrochemical Performance, Annu. Rev. Master. Res., Vol. 33, pp. 361-382, 2003.
[13] Haanappel, V.A.C., Mertens, J., Rutenbeck, D., Tropartz, C., Herzhof, W., Sebold, D. and Tietz, F., Optimisation of processing and microstructural parameters of LSM cathodes to improve the electrochemical performance of anode-supported SOFCs, J. Power Sources, Vol. 141, pp. 216-226, 2005.
[14] M.J. Jùrgensen, S. Primdahl, M. Mogensen, Characterisation of composite SOFC cathodes using electrochemical impedance spectroscopy, Electrochimica Acta , Vol. 44, pp. 4195-4201, 1999.
[15] Xingyan Xu, Zhiyi Jiang, Xing Fan, Changrong Xia, LSM–SDC electrodes fabricated with an ion-impregnating process for SOFCs with doped ceria electrolytes, Solid State Ionics, Vol. 177, pp. 2113-2117, 2006.
[16] J. Deseure, Y. Bultel, L. Dessemond, E. Siesert and P. Ozil, Modeling the porous cathode of a SOFC:oxygen reduction mechanism effect, Journal of Applied Electrochemistry, Vol. 37, pp. 129-136, 2007.
[17] de Boer, B., Gonzalez, M., Bouwmeester, H.J.M. and Verweij, H., The effect of the presence of fine YSZ particles on the performance of porous nickel electrodes, Solid State Ionics, Vol. 127, pp. 269-276, 2000.
[18] Mogensen, M., Jensen, K. V., Jørgensen, M. J. and Primdahl, S., Progress in understanding SOFC electrodes, Solid State Ionics, Vol. 150, pp. 123-129, 2002.
[19] J.H. Hirschenhofer, D.B. Stauffer, R.R. Engleman, and M.G. Klett, Fuel cell handbook 4th, U.S., 1998.
[20] EG&G Technical Services .Inc, Fuel cell handbook 7th, U.S., 2004.
[21] Ni M, Leung MKH, Leung DYC., An electrochemical model of a solid oxide steam electrolyzer for hydrogen production, Chem. Eng. Tech., Vol. 29(5), pp. 636-42, 2006.
[22] Ferguson JR, Fiard JM, Herbin R., Three-dimensional numerical simulation for various geometries of solid oxide fuel cells, J. Power Sources, Vol. 58 (2), pp. 109-22, 1996.
[23] M. Kleitz, F. Petitbon, Optimized SOFC electrode microstructure, Solid State Ionics, Vol. 92, pp. 65-74, 1996.
[24] Armelle Ringuede´, J. Fouletier, Oxygen reaction on strontium doped lanthanum cobaltite dense electrodes at intermediate temperatures, Solid State Ionics, Vol.139, pp. 167-77, 2001.
[25] Y. Takeda, R. Kanno, M. Noda, Y. Tomida, O. Yamamoto, Cathodic polarization phenomena of perovskite oxide electrodes with stabilized zirconia, Journal of the Electrochemical Society, Vol. 134, pp. 2656-2661, 1987.
[26] D.Y. Wang, A.S. Nowick, Cathodic and Anodic Polarization Phenomena at Platinum Electrodes With Doped CeO2 as Electrolyte : I. Steady-State Overpotential, Journal of the Electrochemical Society, Vol. 126(7), pp. 1155-1165, 1979.
[27] Anne C. Co, Shen Jiang Xia, and Viola I. Birss, A Kinetic Study of the Oxygen Reduction Reaction at LaSrMnO3-YSZ Composite Electrodes, Journal of The Electrochemical Society, Vol. 152(3), pp. A570-A576 , 2005.
[28] S. Hashimoto, H. Nishino, Y. Liu, K. Asano, M. Mori, Y. Funahashi and Y. Fujishiro, “Effects of Pressurization on Cell Performance of a Microtubular SOFC with Sc-Doped Zirconia Electrolyte”, Journal of The Electrochemical Society, Vol.155 (6), pp. B587-B591, 2008.
[29] Larry A. Chick, Olga A. Marina, Chris A. Coyle, Ed C. Thomsen, Effects of temperature and pressure on the performance of a solid oxide fuel cell running on steam reformate of kerosene, Journal of Power Sources, Vol. 236, pp. 341-349, 2013.
[30] Mustafa Fazil Serincan, Ugur Pasaogullari, Nigel M. Sammes, Effects of operating conditions on the performance of a micro-tubular solid oxide fuel cell (SOFC), Journal of Power Sources, Vol. 192, pp. 414-422, 2009.
[31] Henke, M., Kallo, J., Friedrich, K.A., Bessler, W.G., Influence of pressurization on SOFC performance and durability: a theoretical study, Fuel Cells, in press (doi:10.1002/fuce.201000098).
[32] S. Bebelis, N. Kotsionopoulos, A. Mai, F. Tietz, Electrochemical characterization of perovskite-based SOFC cathodes, Journal of Applied Electrochemistry, Vol. 37 , pp. 15-20, 2007.
[33] E. Siebert, A. Hammouche, M. Kleitz, Impedance spectroscope analysis of La1-xSrxMnO3-yttria-stablized zirconia electrode kinetics, Electrochim. Acta Vol. 40(11), pp. 1741-1753, 1995.
[34] Bangwu Liu, Yue Zhang, Limin Zhang, Oxygen reduction mechanism at Ba0.5Sr0.5Co0.8Fe0.2O3-δcathode for solid oxide fuel cell, international journal of hydrogen energy, Vol.34, pp.1008-1014, 2009.
[35] E.C. Thomsen, G.W. Coffey, L.R. Pederson, O.A. Marina, Performance of lanthanum strontium manganite electrodes at high pressure, Journal of Power Sources, Vol. 191, pp. 217-224, 2009.
[36] C. Drevet, M. He´nault, J. Fouletier, Oxygen electrode reaction on stabilized zirconia under high oxygen pressure (up to 100 bar), Solid State Ionics, Vol. 136-137, pp. 807-812, 2000.
[37] Stephen R. Gamble, John T.S. Irvine, 8YSZ/ (La0.8Sr0.2)0.95MnO3–δ cathode performance at 1–3 bar oxygen pressures, Solid State Ionics, Vol. 192, pp. 394-397, 2011.
[38] Barsoukov, E., Macdonald, J.R., Impedance spectroscopy theory, experiment, and applications, 2nd Ed. John Wiley&Sons, Inc., New Jersey, 2005.
[39] Huanga Q.A., Hui R., Wang B. and Zhang J., A review of AC impedance modeling and validation in SOFC diagnosis, Electrochimica Acta, Vol. 52, pp. 8144-8164, 2007.
[40] Jorcin, J. B., Orazem, M. E., P´eb`ere, N. and Tribollet, B., CPE analysis by local electrochemical impedance spectroscopy, Electrochimica. Acta, Vol. 51, pp. 1473-1479, 2006.
[41] Chang-Hee Kim, Su-Il Pyun, Jong-Huy Kim, An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations, Electrochimica Acta, Vol. 48, pp. 3455-3463, 2003.
[42] Seidler, S., Henke, M., Kallo, J., Bessler, W.G., Maier, U., Friedrich, K.A., Pressurized solid oxide fuel cells: experimental studies and modeling, J. Power Sources, Vol. 196, pp. 7195-7202, 2010.
[43] Forschungszentrum Julich, FZJ, http://www.fz-juelich.de/portal
[44] Barfod, R., Mogensen, M., Klemensø, T., Hagen, A., Liu, Y.L. and Hendriksen, P.V., Detailed characterization of anode-supported SOFCs by impedance spectroscopy, J. Electrochem. Soc., Vol. 154, pp. B371-B378, 2007.
[45] Gianfranco DiGiuseppe, Li Sun, Electrochemical performance of a solid oxide fuel cell with an LSCF cathode under different oxygen concentrations, International Journal of Hydrogen Energy, Vol. 36, pp. 5076-5087, 2011.