| 研究生: |
鄭雅文 Ya-Wen Cheng |
|---|---|
| 論文名稱: | A note on Carleson measure spaces associated to para-accretive functions |
| 指導教授: | 李明憶 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 23 |
| 中文關鍵詞: | Calderon-Zygmund算子 |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們要討論的是在CMO^p_b上的Calderon-Zygmund 算子有界性。令T是一個Calderon-Zygmund算子,如果Tb = 0,則M_bT在CMO^p_b上是有界的,其中p介於n/(n+(ε/2))和1之間,ε是一個關於算子T核的光滑性指數。相反地,如果M_bT在BMO_b = CMO^1_b上有界,則Tb = 0。
In this paper, we study the boundedness of Calderon-Zygmund operator on the Carleson measure spaces CMO^p_b associated with para-accretive function b. Let T be a Calderon-Zygmund operator. If Tb = 0, then M_bT is bounded on CMO^p_b, for n/(n+(ε/2)), where ε is the regularity exponent of the kernel of T. Conversely, if M_bT is bounded on BMO_b = CMO^1_b, then Tb = 0.
References
[1] R. R. Coifman and G. Weiss. Extensions of Hardy Space
and their use in analysis,Bull. Amer. Math. Soc. 83
(1997), 569-645.
[2] G. David, J.-L. Journé and S. Semmes. opérateurs de
Calderón-Zygmund, fonctions para-accrétives et
interpolation, Rev. Mat. Iberoamericana 1 (1985) 1-
56.
[3] G. B. Folland and E. M. Stein. Hardy Spaces on
Homogeneous Groups, Math. Notes 28, Princeton Univ.
Press, Princeton, NJ, 1982.
[4] C. Fefferman and E. M. Stein. Hp spaces of several
variables, Acta Math. 129, (1972), 137-193.
[5] J. García-Cuerva and J. Rubio de Francia. Weighted
Norm Inequalities and Related Topics, North-Holland,
Amsterdam, 1985.
[6] Y. Han. Calderón-type reproducing formula and Tb
theorem , Rev. Mat. Iberoamericana 10 (1994) 51-91.
[7] Y. Han, M.-Y. Lee and C.-C. Lin. Hardy Spaces and the
Tb Theorem, J. Geom. Anal. 14 (2004) 291-318.
[8] Sen-Hua Lan and Chin-Cheng Lin. Weighted Hardy Spaces
Associated to Paraaccretive Functions, Taiwan. J.
Math. 14, (2010), 1055-1078.
[9] S. Lu. Four lectures on Real Hp spaces, World
Scientific Publishing Co. Pte. Ltd, 1995.
[10] Ming-Yi Lee and Chin-Cheng Lin. Carleson Measure
Spaces Associated to Paraaccretive Functions,
Commun. Contemp. Mathe. 14, (2012) no. 1 1250002
19pp. 17
[11] P. Lemarié. Continuité sur les espaces de Besov des
opérations définies par des intégrales singuliéres,
Ann. Inst. Fourier (Grenoble) 35 (1985), No. 4, 175-
187.
[12] Ming-Yi Lee. Boundedness of Riesz Transforms on
Weighted Carleson Measure Spaces, Studia Mathe. 209
(2) (2012)
[13] Y. Meyer and R. R. Coifman, Wavelets. Calderón-
Zygmund and Multilinear Operators, Cambridge Stud.
Adv. Math. 48, Cambridge Univ. Press, Cambridge,
1997. 18