| 研究生: |
涂慧娟 Hui-Jyuan Tu |
|---|---|
| 論文名稱: |
碳源粒徑對磷酸亞鐵鋰/碳鋰離子電池複合陰極材料之影響 Optimization of carbon coating on LiFePO4 with different sizes of polystyrene spheres as carbon sources |
| 指導教授: |
費定國
George Ting-Kuo Fey |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 陰極材料 、磷酸亞鐵鋰/碳 、碳結構 、聚苯乙烯微球 、表面型態 、鋰離子電池 |
| 外文關鍵詞: | Li-ion batteries, Cathode material, LiFePO4/C, Carbon structure, PS sphere, Morphology |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於磷酸亞鐵鋰(LiFePO4)之污染低、成本低、熱穩定性高,以及循環壽命長,且可耐大電流放電等優點,使其成為前景看好之陰極材料之一。然而導電度低、量產不易、振實密度低與鋰離子擴散速率慢,則為此材料固有之缺點。近年來,許多學者紛紛使用各種碳源進行表面改質,以改善LiFePO4導電度不佳之缺點,並增進其電化學性能。本論文利用不同粒徑之聚苯乙烯(Polystyrene, PS)微球為碳源,對LiFePO4進行表面改質,以探討碳源粒徑對LiFePO4/C複合陰極材料之影響。
由SEM下觀察LiFePO4/C粉體,可發現以最小粒徑0.22 μm PS球為碳源之複合陰極材料,遏止粒子間團聚之效果最佳,LiFePO4/C粒子分布介於100-600 nm之間。此材料於充放電截止電壓分別為4.0與2.8 V,0.2 C下,第一次放電電容量為145 mAh g-1,為所有材料中最高者。然而其循環壽命僅為289次,為所有材料中最短者。相反的,以粒徑最大之2.75 μm PS球為碳源,所合成之LiFePO4/C複合材料,則具有較高導電度(4.44 S cm-1)及表面積(20.58 m2 g-1)。此材料於相同充放電條件下之初始放電電容量僅有132 mAh g-1,但循環壽命卻長達755次。吾人亦利用XRD、SEM、TEM/EDS/SAED、拉曼光譜與慢速循環伏安法等鑑定,以釐清碳源粒徑對LiFePO4/C複合材料之物化性與電池性能影響。
LiFePO4 is a promising alternative cathode material because of its low material cost, environmental friendliness, superior thermal safety, and long operational life. However, the main problem with LiFePO4 is its hard to scale up, low electronic conductivity, low tap density, and slow lithium ion mobility. In recent years, many researchers have used carbon coating to overcome the low electronic conductivity. They have tried various techniques and organic materials to optimize the effect of carbon coating on the cell performance of LiFePO4/C. In this thesis, different sizes of polystyrene (PS) spheres were employed as carbon sources to synthesize the carbon-coated LiFePO4 and to study how sphere size impacts the electrochemical properties of LiFePO4/C composites.
From SEM images, PS sphere with smallest size of 0.22 μm were more effective at preventing the aggregation of LiFePO4 particles. LiFePO4/C with 0.22 μm PS sphere as a carbon source delivered the highest first cycle discharge capacity of 145 mAh g-1 at a 0.2 C. However, it just maintained 289 cycles 80 % capacity retention. On the other hand, the composite prepared using the largest size (2.75 μm) PS sphere, with greater electronic conductivity (4.44×10-4 S cm-1) and surface area (20.58 m2 g-1), showed the lowest initial discharge capacity of 132 mAh g-1, but longest cycle life of 755 cycles. In order to understand how carbon coating influences the electrochemical properties of LiFePO4/C composite cathode materials, we analyzed them using several kinds of instruments, such as XRD, SEM, TEM/EDS/SAED, TOC, BET, Raman spectroscopy, four-point probe conductivity measurements, cyclic voltammetry, and so on.
1.J. Yamaki, S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, M. Arakawa, J. Power Sources 74 (1998) 219.
2.D.W. Murphy, Mat. Res. Bull. 13 (1978) 1395.
3.J.M. Tarascon, M. Armand, Nature 44 (2001) 359.
4.T. Nagaura, K. Tozawa, Prog. Batts. Sol. Cells. 9 (1990) 209.
5.台灣電池協會, http://www.taiwanbattery.org.tw/read.asp?newsID=1794.
6.M. Wakihara, Mater. SCI. Engineering R33 (2001)109.
7.Y.S. Horn, L. Croguennec, C. Delmas, E.C. Nelson, M.A. Okeefe, Nat. Mater. 2 (2003) 464.
8.P. Biensan, B. Simon, J.P. Peres, A. Guibert, M. Broussely, J.M. Bodet, F. Perton, J. Power Sources 81/82 (1999) 906.
9.http://www.phy.cmich.edu/people/petkov/nano.html.
10.J. Hassoun, P. Reale, B. Scrosati, J. Mater. Chem. 17 (2007) 3668.
11.A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188.
12.A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, S. Okada, J.B. Goodenough, J. Electrochem. Soc. 144 (1997)1609.
13.台灣立凱電能科技股份有限公司, http://www.aleees.com/pdf/pp1.pdf.
14.必翔電能高科技股份有限公司,
http://www.phet.com.tw/Products/Products_Intro.aspx.
15.A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, J.B. Goodenough, J. Electrochem. Soc. 144 (1997) 2581.
16.A. K. Padhi, V. Manivannan, J. Electrochem. Soc. 145 (1998) 1518.
17.S. Morzilli, B. Scrosati, F. Sgrlata, Electrochim. Acta 30 (1985) 1271.
18.Liberty Electric Bikes, http://www.iloveebikes.com/batteries.html.
19.S.Y. Chung, J.T. Blocking, Y.M. Chiang, Nature Mater. 2 (2002) 123.
20.Y. Xia, M. Yoshio, H. Noguchi, Electrochim. Acta 52 (2006) 240.
21.N. Ravet, J.B. Goodenough, S. Besner, Electrochemical Society Fall Meeting, Honolulu, Hawaii (1999).
22.H. Huang, S.C. Yin, L. F. Nazarz, Electrochem. Solid-State Lett. 4 (2001) A170.
23.G.X. Wang, L. Yang, S.L. Bewlay, Y. Chen, H.K. Liu, J.H. Ahn, J. Power Sources, In Press (2005).
24.S.L. Bewlay, K. Konstantinov, G.X. Wang, S.X. Dou, H.K. Liu, Mater. Lett. 58 (2004) 1788.
25.Z. Chen, J.R. Dahn, J. Electrochem. Soc. 149 (2002) A1184.
26.S.S. Zhang, J.L. Allen, K. Xu, T.R. Jow, J. Power Sources 147 (2005) 234.
27.K.E. Thomas-Alyea, P. Onnerud, J. Treger, D. Novikov, J. Drennan, A. Beltran, 2005 Meeting Abstracts, 1305.
28.H.T. Chung, S.K. Jang, H.W. Ryu, K.B. Shim, Solid State Comm. 131 (2004) 549.
29.J. Barker, M. Y. Saidi, J.L. Swoyer, Electrochem. Solid-State Lett. 6 (2003) A53.
30.F. Croce, A. D’Epifanio, J. Hassoun, A. Deptula, T. Olczac, B. Scrosati, Electrochem. Solid-State Lett. 5 (2002) A47.
31.A.A. Salah, A. Mauger, K. Zaghib, J.B. Goodenough, N. Ravet, M. Gauthier, F. Gendron, C.M. Julien, J. Electrochem. Soc. 153 (2006) A1692.
32.R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik, J. Jamnik, J. Electrochem. Soc. 152 (2005) A607.
33.J. Moskon, R. Dominko, M. Gaberscek, R. Cerc-Korosec, J. Jamnik, J. Electrochem. Soc. 153 (2006) A1805.
34.H. Liu, Y. Feng, Z. Wang, K. Wang, J. Xie , Powder Technol. In Press, (2007)
35.Y. Hu, M.M. Doeff, R. Kostecki, R. Fiñones, J. Electrochem. Soc. 151 (2004) A1279.
36.J.D. Wilcox, M.M. Doeff, M. Marcinek, R. Kostecki, J. Electrochem. Soc. 154 (2007) A389.
37.J. Cho, Y.J. Kim, T.J. Kim, B. Park, Angew. Chem. Int. Ed. 40 (2001) 3367.
38.H. Liu, G.X. Wang, D. Wexler, J.Z. Wang, H.K. Liu, Electrochem. Commun. 10 (2008) 165.
39.G.X. Wang, L. Yang, Y. Chen, J.Z. Wang, S. Bewlay, H.K. Liu, Electrochim. Acta 50 (2005) 4049.
40.Y.H. Huang, K.S. Park, J.B. Goodenough, J. Electrochem. Soc. 153 (2006) A2282.
41.黃璽元, 碩士論文, "以雙重碳源合成高動力磷酸亞鐵鋰/碳複合陰極材料",國立中央大學, 中華民國台灣 (2007).
42.呂東霖, 碩士論文, "以不同有機酸為碳源製備LiFePO4/C鋰離子電池複合陰極材料",國立中央大學, 中華民國台灣 (2007).
43.徐文祥, 碩士論文, "鈣鈦礦結構氧化物改質LiCoO2陰極材料之製程與其電池性能研究",國立中央大學, 中華民國台灣 (2006).
44.Y.M. Abu, K. Aoki J. Electroanal. Chem. 583 (2005) 133.
45.丁志凡, 碩士論文, "螫合性高分子乳液之合成及其應用",國立成功大學, 中華民國台灣 (2004).
46.C.K. Ober, M.L. Hair, J. Polym. Sci., Part A: Polym Chem. Ed. 25 (1987) 1395.
47.張洪濤、江兵兵、黃錦霞,高分子材料科學與工程 18 (2002) 57.
48.H. Liu, C. Li, H.P. Zhang, L.J. Fu, Y.P. Wu, H.Q. Wu, J. Power Sources 159 (2006) 717.
49.K.F. Hsu, S.Y. Tsay, B.J. Hwang, J. Power Sources 146 (2005) 529.
50.B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, Prentice Hall Publishers, New Jersey, USA, 2001, 3rd edn., chapter 5.2.
51.C.M. Julien, K. Zaghib, A. Mauger, M. Massot, A. Ait-Salah, M. Selmane, F. Gendron, J. Appl. Phys. 100 (2006) 063511.
52.M.R. Roberts, A.D. Spong, G. Vitins, J.R. Owen, J. Electrochem. Soc. 154 (2007) A921.
53.K.F. Hsu, S.Y. Tsaya, B.J. Hwang, J. Mater. Chem. 14 (2004) 2690.
54.L.J. van der Pauw, Phil. Res. Rep. 13 (1958) 1.
55.S.T. Myung, S. Komaba, N. Hirosaki, H. Yashiro, N. Kumagai, Electrochim. Acta 49 (2004) 4213.
56.R. Dominko, J M. Goupil, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, J. Jamnik, J. Electrochem. Soc. 152 (2005) A858.
57.J.R. Dahn, J. Jiang, L.M. Moshurchak, M.D. Fleischauer, C. Buhrmester, L.J. Krause, J. Electrochem. Soc. 152 (2005) A1283.