| 研究生: |
張志強 Chih-Chiang Chaung |
|---|---|
| 論文名稱: |
光合菌在光生物反應器產氫之研究 Photosynthetic bacteria photobioreactor for H2 production |
| 指導教授: |
徐敬衡
Chin-Hung Shu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 88 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 紫色非硫菌 、照光式反應器 、氫氣 、光合細菌 、細胞固定化 |
| 外文關鍵詞: | photobioreactor, hydrogen, Photosynthetic bacteria, purple non-sulfur PSB, cell immobilization |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氫氣是替代石化燃料的最好選擇。由於氫氣燃燒後的產物是水,不會造成環境的負荷,可謂是最乾淨的燃料。因此,氫氣被科學家認為是取代石油世紀的主要能源。目前使用氫氣的的主要瓶頸是缺乏重要相關科技之研發,如良好的生產技術、儲存、運輸與應用科技。在不同生產氫氣的方式以利用太陽能最吸引人且符合永續發展精神的方法。科學家在文獻中也強調生物法生產氫氣較物理法和化學法為優。並且又指出在所有已知之生物系統中,光合菌是最有效率之氫氣生產者。
光合菌中的紫色非硫菌,雖然有非常複雜的生理特性,但是有不少菌株具有氫氣之生產能力,並且產量高又穩定,具實用潛力。但是,當應用時發現一個普遍存在的問題,即氫氣生產力的不穩定性;光合菌之氫氣生產力無法在光反應器內持續存在。到目前為止,僅有少數理論對其氫氣生產力不穩定性提出解釋。因此,藉工程的角度來增加其穩定性是必要的。目前解決方法之一是藉細胞固定化來達到氫氣之穩定生產。但是文獻中主要採用之細胞固定化法是膠體包埋法,此法在產程放大(scale-up)時容易受到膠體本身之物性上的限制。有鑑於此,本研究針對未來以生物法進行工業化生產氫氣時,可能面臨之問題,來改進現有光生物反應器之設計。即開發比膠體包埋法成本較低的細胞固定化法--吸附法。
本實驗研究成果主要分下列四部分來討論。第一部分是菌種採購與分離篩選; 第二部分是生物反應器之設計與製作; 第三部分是無固定化下,菌種生長特定之探討; 第四部分是在固定化生物反應器中觀察氫氣生產效果。實驗結果顯示,可知不同的照光強度和方式可提高Rhodobacter sphaeroide CCRC13100的生長速率(µ)單面照光為µ=0.019 hr-1,四面照光為µ=0.056 hr-1。對於提高產氫的能力單面照光為qH2=0.653 ml/hr/g cell,四面照光為qH2=1.785 ml/hr/g cell。在Fed-batch連續進料方面,能延長產氫時間和增加產氫量到456 hr並且增加產氫量到298ml/L H2。對於提高產氫的能力可提升到qH2=1.231 ml/hr/g cell。另外,在Fed-batch固定化連續進料方面,能延長產氫時間和增加產氫量以提高產氫能力到1239 hr並且增加產氫量到2690 ml/L H2。對於提高產氫的能力可提升到qH2=2.4 ml/hr/g cell。
Hydrogen is considered to be one of the best alternative fuels to petroleum. Most of pollutants of our environment are resulted from widely using petroleum as fuels. Hydrogen is also the cleanest energy because its product is water after burning with oxygen. It is believed that hydrogen will replace the petroleum as the major fuel in the next era.
Scientists have found many different approaches in hydrogen production since the last two decades.Among these approaches, it is believed that utilizing the solar energy to hydrogen production is the most appealing concept.Three methods including chemical, physical, and biological approaches can utilize solar energy for hydrogen production. Biological approach is considered to be better than the other two methods. Among all known biological system, photosynthetic bacteria (PSB) is the most efficient hydrogen producer.
PSB can utilize the solar energy for carbon dioxide fixation and hydrogen production. Several purple non-sulfur PSB have been reported to be the best hydrogen producers.
One of the common problems using PSB for hydrogen production is the instability of hydrogen producing capability of PSB. There is limited understanding of the instability in the academia. Thus, one common solution to this instability is by gel immobilization. Although gel immobilization can solve the instability problems, it creates other problems such as substrate diffusion difficulty, shading effects from immobilized cells, and scale-up problems.
Thus, the major focus of this project is to study the feasibility of using alternative immobilization method – adsorption on cotton fiber for hydrogen production and carbon dioxide fixation. Adsorption immobilization as compared with gel immobilization is considered to be most suitable for large-scale production due to its less mass transfer difficulty and lower operational cost. Thus, higher hydrogen production is expected.
Experimental results of this project are presented in four sections: four PSB strains are collected and isolated, design and manufacture of photobioreactors, characterization of PSB by batch fermentation, and performance of immobilized photobioreactors.Experimental data indicated that both reactor design and environmental conditions such as medium composition and light intensity play important role in carbon dioxide fixation and hydrogen production.
1. Ardelean,I., Dumitru, L., Faghi,A., and Zarnea, G.,St. Cere. Biol. Ser. Biol. Veg. 41, p.131, 1989.
2. Buranakarl. L., Ying, F.C., Ito, K., Izaki, K., and Takahashi, H.“Production of Molecular-Hydrogen by Photosynthetic Bacteria with Raw Starch” Agric. Biol. Chem., 49, p.3339, 1985.
3. Burgess J. G., Miyashita, H., Sudo, H. and Matsunaga, T. FEMS Microbiol. Lett. 77, p.301, 1991.
4. Castillo F.,Caballero F.J.and Conrado M.(1986) “Nitrite uptake system in photosythetic bacteria Rhodopseudomonas capsulata E1F1.”Biochimica Biophysica Acta.848,16-23.
5. Chien, Y. H. and Liang, R. Y. Paper presented in World Aquaculture ’94, New Orleans, Louisiana, Jan. p.12,1994.
6. Chien, Y. H. and Wei, T. Z.. Paper presented in World Aquaculture ’93, Torremolinos, Spain, May, 26-28, 1993.
7. Dell, R.M., and Bridger, N.Y. Appl. Energy 1, p.279, 1975.
8. Driessens, K., Liessens, J., Masduki, S., Verstraete, W., Nelis, H. and Deleenheer, A. Process Biochem. December, p.160, 1987.
9. Ellen M.Silva,Shang-Tian Yang, “Kinetics and stability of a fibrous-bed bioreactor for continuous production of lactic acid from unsupplemented acid whey” Journal of Biotechnology 41(1995)59-70.
10. Felten, P., Zurrer, H., Bachofen, R. “Production of molecular hydrogen with immobilized cells of Rhodospirillum rubrum” Appl. Microbiol. Biotechnol., 23, p.15, 1985.
11. Francou, N. and Vignais, P.M. Biotechnol. Lett.6, p639, 1984.
12. Gaffron, H. and Rubin, J. “ Fermentative and photochemical production of hydrogen in algae”(1942) J. Gen. Physiol. 26, 219-240.
13. Habte, M. and Alexander, M.. Appl. Environ. Microbiol. 39, p.342, 1980.
14. Herbert, R. A., J. Appl. Bacteriol. 41, p.75, 1976.
15. Hirotani, H., Ohigashi, H., Kobayashi, M., Koshimizu, K. and Takahashi, E. FEMS Microbiol. Lett. 77,p.13, 1991.
16. Hochman, A. and Shemesh, A. J. Biol. Chem. 262,p.6871, 1987.
17. Hojae Shim, Shang-Tian Yang, “Biodegradation of benzene,toluene ,ethylbenzene,and o-xylene by a coculture of Pseudomonas putida and Pseudomonas fluorescens immobilized in a fibrous-bed bioreactor.” Journal of Biotechnology 67 (1999)99-112.
18. Huang, Y.L., C.H. Shu and S.T. Yang, Biotechnol. Bioeng., 53, p.470,1997.
19. Imhoff, J. F., Truper, H. G. and Pfennig, N., Int. J. Syst. Bacteriol. 34, p.340, 1984.
20. Inci Eroglu,Kadir Aslan,Ufuk Gunduz,Meral Yucel,Lemi Turker, “Substrate consumption rates for hydrogen production by Rhodobacter sphaeroides in a column photobioreactor”Journal of Biotechnology 70(1999)103-113.
21. Jüttner, F. Process Biochem. March/April, p.2, 1982.
22. James M. Odom and Judy D. Wall, Applied and Environmental Microbiology , apr. 1983,p.1300-1305.
23. Jun Miyake, Xing-Yi Mao, and Sugio Kawamura , “Photoproduction of Hydrogen from Glucose by a Co-culture of a Photosythetic Bacterium and Clostridium butyricum.” J. Ferment. Technol., Vol. 62, No. 6, p. 531-535, 1984.
24. Jun Miyake,Noboru Tomizuka,and Akira Kamibayashi,“Prolonged Photo-Hydrogen Production by Rhodospirillum rubrum”J. Ferment. Technol., Vol. 60, No. 3, p. 199-203,1982.
25. Kim J.S.,Ito K. and Takahashi H.(1981) “Production of molecular hydrogen by Rhodopseudomonas sp..” J. Ferment. Technol., Vol. 59,p. 185-190.
26. Kranz R. G. and Haselkorn R.(1986) “Anaerobic
regulation of nitrogen - fixation genes in Rhodopseudomonas
capsulata. ”Proc.Natl.Acad.Sci.83,6805-6809.
27. Matsunaga,T., and Mitsui,A. Biotechnol. Bioeng. Symp.12, p. 441, 1982.
28. McEwan A. G.,Greenfield A. J.,Wetzstein H.G.,Jackson J.B.and Ferguson S.J.(1985) “Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata. ”J.bacteriol.164,823-830.
29. Mitsui, A. In “Solar-Hydrogen Energy System” (T. Ohta, ed.),Pergamon, Oxford and New York,p.171, 1979.
30. Naoaki Kataoka, Akiko Miya and Koichi Kiriyama, Wat. Sci. Tech. “Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria.” Vol. 36, No. 6-7,pp.41-47,1997.
31. Napavarn Noparatnaraporn, Yoshinori Nishizawa, Mitsunori Hayashi, and Shiro Nagai, “Single cell Proein Production from Cassave Starch by Rhodopseudomonas gelatinosa.” J. Ferment. Technol., Vol. 61, No.5,p.515-519,1983.
32. Pfennig, N. Ann. Rev. Microbiol. 31, p.275, 1977.
33. Reinhard Bolliger, Hans Zurrer,and Reinhard Bachofen, “Photoproduction of molcular hydrogen from waste water of a sugar refinery by photosynthetic bacteria.” Appl Microbiol Biotechnol (1985) 23:147-151.
34. Sasaki, K., Tanaka, T., Nishizawa, Y., Hayashi, M. Appl. Microbiol. Biotechnol. 32, p.727, 1990.
35. Sasikala, C. and Ramana, C. V., Adv. Appl. Microbiol. 41,p. 174, 1995.
36. Sasikala, K., Ramana, C., Rao, P.Adv. “Anoxygenic phototrophic bacteria:physiology and advances in hydrogen production technology ” Appl. Microbiol. 38,p. 211, 1993.
37. Sasikala, K., Ramana, C.V., Raghuveer Rao, P., and Subrahmanyam, M. FEMS Microbiol. Lett. 72, p.23, 1990.
38. Serdyuk, O. P., Smolygina, L. D., Kobzar, E. F. and Gogotov, I. N.. FEMS Microbiol. Lett. 109, p. 113, 1993.
39. Shu, C.H. and S.T. Yang, . “Effects of particle loading on GM-CSF Production by Saccharomyces cerevisiae in a three-phase fluidized bed bioreactor.” Biotechnol.Bioeng.51, p.229, 1996.
40. Shu, C.H. and S.T. Yang. “Kinetics of continuous GM-CSF production by recombinant Saccharomyces cerevisiae in an airlift bioreactor.”J. Biotechnol. 48, p.107,1996.
41. Stevens, P., Plovie, N., De Vos, P. and De Ley, J.(1986) System. Appl. Microbiol. 8, 19-23.
42. Tsygankov, A. A., Laurinavichene, T. V., Bukatin, V. E., Gogotov, I. N. and Hall, D. O. Appl. Biochem. Microbiol. 33,p. 544, 1997.
43. Veziroglu, T.N. (1987) Int. J. Hydrogen Energy 12(2), 99-129.
44. Vincenzini, M., Materassi,R., Sili,C., and Balloni, W., Int. J. Hydrogen Energy, 11, p.623, 1986.
45. Vrati, S.. “Single cell protein production by photosythetic bacteria grown on the clarified effluents of biogas plant” Appl. Microbiol. Biotechnol. 19,p.199,1984.
46. Xing-Yi Mao, Jun Miyake , and Sugio Kawamura, J. Ferment. Technol., Vol. 64, No.3,245-249.1986.
47. Yang, S.T. and C.H. Shu,“ Kinetics and stability of GM-CSF production by recombinant yeast cells immobilized in a fibrous-bed bioreactor” Biotechnol. Progr. 12, p.456, 1996.
48. 小林達治,光合細菌的大量培養方法,<特許公報>(日),昭42-11979,1967。
49. 王育鋒等,用光合細菌菌液池塘培育淡水魚種的試驗,<水產學報>,14(4),1990,347-350。
50. 王應哲譯,光合細菌在養殖魚中應用,<淡水漁業譯叢>,(9),1985。
51. 宋作人(1984),活性污泥法添加及未添加光合菌處理魚巿場廢水,國立成功大學環境工程研究所碩士論文。
52. 史家樑等,光合細菌在廢水處理中的應用及菌體的綜合利用,<微生物學通報>,8(4),1981,186-188。
53. 布坎南 R.E. 等編( 中國科學微生物研究所<伯杰細菌鑑定手冊>翻譯組譯),<伯杰細菌鑑定手冊(第八版),科學出版社,1984。
54. 矢木修身,用水的廢水,(發酵的工業),19(8),1977,949-951。
55. 馬述法等,光合細菌在養蝦生產中應用試驗報告,<中國水產>,(7),1987,32-33。
56. 陳世陽等,光合細菌的特徵及其開發利用,<海洋通報>,10(1),1991,24-32。
57. 陳正宇、李冬華,光合細菌在水產養殖上的應用,珠江水產,5,p.88, 1987.
58. 喬振國等,以光合細菌菌液作為對蝦配合飼加劑的初步研究,<飼料科技發展新途徑-全國畜牧水產飼料開發利用交流論文集>,全國科協學會工作部出版,1988,170-175。
59. 董慧鋒等,光合細菌(PSB)飼餵海灣扇貝幼體的試驗,<海洋科學>,(2),1992,14-16。