跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許怡君
Yi-Chun Hsu
論文名稱: 藉由X射線光電子能譜分析銅表面微結構與銅表面可焊性之相關性研究
Correlation study between Cu surface microstructure and solderability of Cu surface by X-Ray photoelectron spectroscopy
指導教授: 劉正毓
Cheng-Yi Liu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 71
中文關鍵詞: 光電子能譜儀殘留應力可焊性功函數缺陷
外文關鍵詞: XPS, Residual stress, Solderability, Work function, Defect
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於工業製程中對銅材進行滾壓機械加工,其加工表面會生成一表面滾壓層(surface rolling layer),已於先前之研究被定義出。此表面滾壓層之特性以及其厚度將影響銅材與焊料之間之濕潤性質,先前研究指出具有較厚之表面滾壓層會導致濕潤性之下降,進而降低焊接可靠度。因此,將針對此表面滾壓層做更深入之探討並藉由氧化還原處理以改善銅材之表面可焊性。於第四章中,我們先針對影響銅材與焊料的溼潤性質之可行性進行探討,首先,藉由可焊性測試(Soldering test)與低掠角X光繞射儀(Grazing Incident X-ray Diffraction),我們發現相對表面殘留應力(relative residual stress)與可焊性兩者之間存在對應的關係,而表面殘留應力則來自於表面破壞產生的固有缺陷(intrinsic defect)。同時,藉由光電子能譜儀(X-ray Photoelectron Spectroscopy)以及紫外光電子能譜儀(Ultraviolet Photoelectron Spectroscopy)對氧化銅表面進行分析,探討固有缺陷對於光電子特性之影響,兩論點可以被建立出:(1)不同殘留應力對庫倫作用能之影響和(2)固有缺陷造成之自由電子濃度差異對功函數之影響。最後在第五章,再利用這些論點去建立氧化還原處理以改善銅材之表面可焊性之機制。


    Cu always processed into mechanical cold work in technological industry. The surface rolling layer (SRL) would form on the Cu which is defined in previous research. The characteristics and thickness of SRL would affect the wetting performance between rolled-Cu and high-Pb solder. Previous research indicated that the thicker SRL would cause wetting performance decreasing, hence decreasing the reliability of solder joint. Therefore, in this work, we will discuss the physical properties of SRL in a detail and solderability improving by redox treatment. In Chapter 4, we further discuss about the factors affecting the solderability. First, we compare to GIXRD and solderability of Cu lead-frames, the relative residual stress of Cu was corresponded to solderability and indicated that the well solderability shows the relative low strained on Cu surface. The main factor for the residual stress is more likely to be intrinsic defects formed in the manufactured process.Then, we use XPS/UPS analysis of the CuxO surface to observe the photo-electronic properties affecting by the intrinsic defects. With knowing all the probably factors affecting the photo-electronic behaviors in the intrinsic defects, we can construct two versions for the intrinsic defects affecting photo-electronic behaviors. First one is the difference of Coulomb interaction energy observing in Cu 2p spectrum. The second one is the work function with various free electron concentration trapped by the defects. Afterwards, we combine these two versions into the mechanism. The mechanism of improving solderability by redox treatment was established.

    Abstract (Chinese) I Abstract (English) II Table of contents III List of figures V List of tables VII Chapter 1 Introduction VII 1.1 Background 1 1.2 Change of microstructure after cold work 3 1.3 Measurements of residual stress 7 1.4 Binding energy shift in XPS analysis 10 1.5 Correlation of relative binding energy shift and induced stress 12 Chapter 2 Motivation 14 Chapter 3 Experimental process and measurements 16 3.1 Cu and CuxO substrates preparation 16 3.2 Cross-sectional, surface, and bulk analysis 17 3.3 Soldering test 17 Chapter 4 Results and discussions 19 4.1 Soldering test on Cu lead-frames 19 4.2 GIXRD analysis in microstructure 21 4.2.1 Texture coefficient calculation 21 4.2.2 Residual stress calculation 23 4.3 Correlation of photo-electron feature and intrinsic residual stress of defects 26 4.3.1 Characteristic of Cu 2p in strained CuxO 26 4.3.2 Charge transfer mechanism of excited Cu (3d9) in strained CuO 29 4.3.3 Characteristic of Valence band XPS (VBXPS) in strained CuO 38 4.3.4 Work function by UPS analysis in strained CuO 41 4.4 Summary 47 Chapter 5 Mechanism of improving solderability by redox treatment 48 5.1 Grain morphology analysis 48 5.2 Mechanism of Cu-Sn bond in redox process 49 5.3 Summary 50 Chapter 6 Conclusion 54 Reference 55

    [1] John H. Lau, Flip chip technologies, McGraw-Hill, New York, 1996.
    [2] C. S. Huang, J. G. Duh, Y. M. Chen and J. H. Wang, J. Electron. Mater., 32, 89-94, 2003.
    [3] M. O. Alam, Y. C. Chan, K. N. Tu and J. K. Kivilahti, Chem. Mater., 17, 2223-2226, 2005.
    [4] D. R. Frear, J. W. Jang, J. K. Lin and C. Zhang, J. Mater., 53, 28-33, 2001.
    [5] Y. H. Hsiao, Y. C. Chuang and C. Y. Liu, Scripta Materialia, 54, 661-664, 2006.
    [6] S. W. Chen and C. H. Wang, J. mater. Res., 21, 2270-2277, 2006.
    [7] S. Kim, J. H. Jang, J. S. Lee and D. J. Duquette, Electrochimica Acta, 52 5258–5265 (2007).
    [8] P. Fricoteaux and J. Douglade, J. of Materials Science Letters, 21, 1485-1488 (2002).
    [9] O. Liao, L. Q. Zhu, H. C. Liu and W. P. Li, International Journal of Minerals, Metallurgy and Materials, 17, 1 (2010).
    [10] Y. H. Chen, W. C. Liu, Y. C. Lin, C. C. Chung, W. J. Zeng, W. J. Chu, T. Y. Chung, and C. Y. Liu, Journal of Electronic Materials, 45, 1, 191-196, 2016.
    [11] 汪建民 主編, "材料分析 Material Analysis", 中國材料科學學會, 2013.
    [12] K.L. Soderman and J.P. Giroud, Relationships between uniaxial and biaxial stresses and strains in geosynthetics, Geosynthetics internationals, 2, No. 2, 495-504, 1995.
    [13] Society for Automotive Engineering, Residual Stress Measurement by X-Ray Diffraction, 2nd ed., 1971, SAE J748a.
    [14] I.C. Noyan, J.B. Cohen, Residual Stress, Measurement by Diffraction and Interpretation, Springer-Verlag, New York, 1987.
    [15] C.-H. Ma, J.-H. Huang, and Haydn Chen, Thin Solid Films, 418, 73–78, 2002.
    [16] G. Liu, T. P. St. Clair, and D. W. Goodman, J. Phys. Chem. B, 103, 8578 - 8582, 1999.
    [17] M. A. van Veenendaal and G. A. Sawatzky, "Competition between screening channels in core-level x-ray photoemission as a probe of changes in the ground-state properties of transition-metal compounds", Physical Review B 74(8): 085118, 2006.
    [18] M. A. van Veenendaal and G. A. Sawatzky, "Nonlocal screening effects in 2p x-ray photoemission spectroscopy core-level line shapes of transition metal compounds", Physical Review Letters 70(16): 2459-2462, 1993.
    [19] Hennig, D., Ganduglia-Pirovano M. V. and Scheffler, M. Phys. ReV. B, 53, 10344, 1996.
    [20] Bagus, P. S., Brundle, C. R., Pacchioni, G. and Parmigiani, F. Surf. Sci. Rep., 19, 265, 1993.
    [21] Rodriguez, J. A. and Goodman, D. W. Acc. Chem. Res. 1995, 28, 477.
    [22] M. Murugesan, H. Nohira, H. Kobayashi, T. Fukushima, T. Tanaka and M. Koyanagi, Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd, 625-629, 2012.
    [23] K. Hirose, H. Nohira, K. Azuma, and T. Hattori, Progress in Surface Science, 82, 3, 2007.
    [24] Y. H. Hsiao, Study of solder wettability on Cu lead-frame, Department of Chemical and Materials Engineering National Central University, Ph. D Thesis, 2011.
    [25] J. Y. Park, T. H. Kwon, S. W. Koh, and Y. C. Kang, Bull. Korean Chem. Soc., Vol. 32, No. 4 1331-1335, 2011.
    [26] B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, Third Edition.
    [27] Kunfeng Chen, Shuyan Song and Dongfeng Xue, CrystEngComm, 15, 144–151, 2013.
    [28] X. Jiang, T. Herricks, and Y. Xia, Nano Lett., 2, 1333, 2002.
    [29] C.J. Love, J.D. Smith, Y. Cui, and K.K. Varanasi, Nanoscale, 3, 4972, 2011.
    [30] Xiangdong Liu and Hiroshi Nishikawa, Scripta Materialia, 120, 80-84, 2016.
    [31] Stefan Hufner, Photoelectron Spectroscopy Principles and Applications, Third revised and enlarged edition.
    [32] Li Chen, Mitsugi Hamasaki, Hirotaka Manaka, and Kozo Obara, Open Journal of Physical Chemistry, 4, 44-51, 2014.
    [33] Okada, K., Changes in the Electronic State of the Copper Oxide and Cu 2p XPS by Doping, 2004.
    [34] Pei-Hsing Huang and Chi-Ming Lu, The Scientific World Journal, Volume 2014, Article ID 863404.
    [35] K.P. McKenna and A.L. Shluger, Microelectronic Engineering, 86, 1751–1755, 2009.
    [36] K. Seki and H. Ishii, IEEE Trans. on Electron Devices, 44, 8, 1295-1301, 1997.
    [37] Mark T. Greiner, Michael G. Helander, Wing-Man Tang, Zhi-BinWang, Jacky Qiu and Zheng-Hong Lu, Nature materials, 11, 76-81, 2012.
    [38] Fei Long, Poya Yasaei, Raj Sanoj, Wentao Yao, Petr Král, Amin Salehi-Khojin, and Reza Shahbazian-Yassar, ACS Appl. Mater. Interfaces, 8, 18360−18366, 2016.
    [39] Yuzheng Guo, John Robertson, Engineering Department, Cambridge University, Cambridge CB2 1PZ, UK.
    [40] C. R. A. Catlow, A.E.R.E., Harwell, Oxon, J. S. Anderson, and F.R.S, Proc. R. Soc. Lond. A., 353, 533-561, 1977.
    [41] Mark T. Greiner, Lily Chai, Michael G. Helander, Wing-Man Tang, and Zheng-Hong Lu, Adv. Funct. Mater., 22, 4557–4568, 2012.
    [42] Dong-Jin Yun, Sang-Hoon Lim, Seung-Hwan Cho, Bo-Sung Kim, and Shi-Woo Rhee, Journal of The Electrochemical Society, 156, 8, H634-H639, 2009.
    [43] Jae Y. Kim, Jose´ A. Rodriguez, Jonathan C. Hanson, Anatoly I. Frenkel, and Peter L. Lee, J. AM. CHEM. SOC., 125, 10684-10692, 2003.

    QR CODE
    :::