| 研究生: |
詹翊鋒 Yi-Fong Jhan |
|---|---|
| 論文名稱: |
結合APOS理論與科技輔助學習之數學教學行動研究 An Action Research on Mathematics Instruction Integrating APOS Theory and Technology-Enhanced Learning |
| 指導教授: |
吳穎沺
Ying-Tien Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 網路學習科技研究所 Graduate Institute of Network Learning Technology |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | ACE教學循環 、行動研究 、APOS理論 、教師專業發展 、科技輔助學習 |
| 外文關鍵詞: | ACE teaching cycle, Action Research, APOS theory, Teacher Professional Development, Technology-Enhanced Learning |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本行動研究旨在增進教學者(亦即研究者本人)關於高職數學教學之專業知能,本研究的參與對象是研究者本人,以及研究者任教班的32名高職二年級學生。此次行動研究將進行基於APOS Theory的ACE teaching cycle為一個教學循環,共進行兩個循環,歷時6週共18節課。
研究者在每一個教學循環結束後,皆進行資料整理與省思,並以此作為下一階段教學策略調整與優化的依據。歷經兩次教學循環後,教師逐漸觀察到學生的學習歷程從「學會」邁向「想學」,進而促使教學者重新思考自身的教學信念與專業知能。教師的教學信念也從最初的老師「教完」,轉向重視是否真正「教會」學生,最終發展為「啟學」的理念,致力於激發學生主動探索與反思的學習態度。最後,研究者基於教學歷程與省思,提出運用APOS理論之ACE教學循環與科技輔助學習於數學教學的具體建議,以作為未來課堂教學設計與實踐的參考。
本行動研究的結論為教學者在ACE教學循環中得到的教學實務經驗,除了形成一套數學教學活動準備與進行流程,也提供教師在規劃數學教學活動時的注意事項,另外藉由此次的行動研究,研究者除了發現行動研究對教師專業發展的正面意義,也建議教師可以將APOS理論中的ACE教學循環應用於其他學科課程中進行。
This action research aimed to enhance the professional knowledge of the teacher-researcher in vocational high school mathematics instruction. The study involved the teacher-researcher and 32 second-year students from the researcher’s class and was conducted over two instructional cycles, spanning six weeks and 18 class sessions, using the ACE Teaching Cycle grounded in APOS Theory. After each cycle, the researcher collected and analyzed data, reflected on the instructional process, and used these insights to adjust teaching strategies. Throughout the two cycles, the teacher observed a shift in students’ learning attitudes—from acquiring knowledge to a desire to learn—which prompted a re-evaluation of teaching beliefs and professional growth. The teacher’s perspective evolved from focusing on being able to teach well, to ensuring students truly understand, and ultimately to inspiring students to actively explore and reflect. Based on the instructional process and reflections, the researcher offers practical suggestions for applying APOS Theory, the ACE Teaching Cycle, and Technology-Enhanced Learning in mathematics instruction to inform future lesson design and teaching practice.. The study concludes that engaging in the ACE Teaching Cycle provides not only a structured approach to planning and implementing mathematics instruction but also valuable insights for professional development. Furthermore, the researcher suggests that the ACE Teaching Cycle may be beneficially applied to other subject areas.
張德銳(2007)。教學行動研究:實務手冊與理論介紹。臺北:高等教育。
張德銳、李俊達(2011)。教學行動研究對中學教師教學省思影響之研究。教育研究與發展期刊,7(1),151-178。
張靜嚳(1996)。傳統教學有何不妥。國立彰化師範大學科學教育研究所:建構與教學期刊,4。
陳英娥、林福來(2004)。行動研究促進初任數學教師的教學成長。科學教育學刊,12(1),83-105。
Álvarez, J. A., Arnold, E. G., Burroughs, E. A., Fulton, E. W., & Kercher, A. (2020). The design of tasks that address applications to teaching secondary mathematics for use in undergraduate mathematics courses. The Journal of Mathematical Behavior, 60, 100814. https://doi.org/10.1016/j.jmathb.2020.100814
Anastasija, M., & Jelena, M. (2021). THE ROLE OF ACTION RESEARCH IN TEACHERS’PROFESSIONAL DEVELOPMENT. International Journal of Cognitive Research in Science, Engineering and Education, 9(3), 301-317. https://doi.org/10.23947/2334-8496-2021-9-3-301-317
Angraini, L. M., Kania, N., & Gürbüz, F. (2024). Students' Proficiency in Computational Thinking Through Constructivist Learning Theory. International Journal of Mathematics and Mathematics Education, 2(1), 45-59. https://doi.org/10.56855/ijmme.v2i1.963
Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Fuentes, S. R., Trigueros, M., & Weller, K. (2013). APOS theory: A framework for research and curriculum development in mathematics education. Springer Science & Business Media. https://doi.org/10.1007/978-1-4614-7966-6_6
Asiala, M., Brown, A., DeVries, D. J., Dubinsky, E., Mathews, D., & Thomas, K. (1996). Curriculum Development in. Research in collegiate mathematics education II, 2, 1. . https://doi.org/10.1090/cbmath/006/01
Attard, C., & Holmes, K. (2020). “It gives you that sense of hope”: An exploration of technology use to mediate student engagement with mathematics. Heliyon, 6(1). https://doi.org/10.1016/j.heliyon.2019.e02945
Bandura, A., & Walters, R. H. (1977). Social learning theory (Vol. 1, pp. 141-154). Englewood Cliffs, NJ: Prentice hall.
Baye, M. G., Ayele, M. A., & Wondimuneh, T. E. (2021). Implementing GeoGebra integrated with multi-teaching approaches guided by the APOS theory to enhance students’ conceptual understanding of limit in Ethiopian Universities. Heliyon, 7(5). https://doi.org/10.1016/j.heliyon.2021.e07012
Carr, W., & Kemmis, S. (2003). Becoming critical: education knowledge and action research. Routledge.
Cohen, L., Manion, L., & Morrison, K. (2017). Action research. In Research methods in education (pp. 440-456). Routledge. https://doi.org/10.4324/9781315456539-22
Creemers, B., Kyriakides, L., & Antoniou, P. (2013). Teacher Professional Development for improving Quality of Teaching. https://doi.org/10.1007/978-94-007-5207-8
Dempsey, P. R., & Zhang, J. (2019). Re-examining the construct validity and causal relationships of teaching, cognitive, and social presence in Community of Inquiry framework. Online Learning, 23(1), 62–79. https://doi.org/10.24059/olj.v23i1.1419
Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In Advanced mathematical thinking (pp. 95-126). Dordrecht: Springer Netherlands.
Dubinsky, E., & Leron, U. (1994). Learning abstract algebra with ISETL. New York: Springer. DOI: 10.1007/978-1-4612-2602-4.
Dubinsky, E., & McDonald, M. A. (2001). APOS: A constructivist theory of learning in undergraduate mathematics education research. In The teaching and learning of mathematics at university level: An ICMI study (pp. 275-282). Dordrecht: Springer Netherlands. https://doi.org/10.1007/0-306-47231-7_25
Dunn, T. J., & Kennedy, M. (2019). Technology Enhanced Learning in higher education; motivations, engagement and academic achievement. Computers & education, 137, 104-113.
Earl, S. R., Taylor, I. M., Meijen, C., & Passfield, L. (2023). Trajectories in cognitive engagement, fatigue, and school achievement: The role of young adolescents' psychological need satisfaction. Learning and Individual Differences, 101, 102248. https://doi.org/10.1016/j.lindif.2022.102248
Epstein, J. L., & McPartland, J. M. (1976). The concept and measurement of the quality of school life. American Educational Research Journal, 13, 15–30. https://doi.org/10.3102/00028312013001015
Foshee, C. M., Elliott, S. N., & Atkinson, R. K. (2016). Technology‐enhanced learning in college mathematics remediation. British Journal of Educational Technology, 47(5), 893-905.
Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of educational research, 74(1), 59-109. https://doi.org/10.3102/00346543074001059
Gao, Z. Y., & Newton, M. (2009). Examining the mediating role of strategy use on students' motivation and persistence/ effort in physical education. Journal of Sport Behavior, 32(3),275-297. https://doi.org/10.1123/jtpe.31.3.246
Handelsman, M. M., Briggs, W. L., & Sullivan, N. (2005). A measure of college student course engagement. Journal of Educational Research, 98(3), 184-191. https://doi.org/10.3200/JOER.98.3.184-192
Hernández, F. R., Durón-Ramos, M. F., García-Vázquez, F. I., Chacón-Andrade, E. R., & Rivera, M. E. L. (2024). Effects of classroom climate and eudaimonic well-being on student engagement in Mexico and El Salvador. International Journal of Educational Research Open, 7, 100349. https://doi.org/10.1016/j.ijedro.2024.100349
Hiebert, J., Gallimore, R., & Stigler, J. W. (2003) The new heroes of teaching. Education Week 23(10), 56, 42. Retrieved November 2003.
Johnson, K. E., & Golombek, P. R. (2011). A sociocultural theoretical perspective on teacher professional development. In Research on second language teacher education (pp. 15-26). Routledge.
Kali, Y., McKenney, S., & Sagy, O. (2015). Teachers as designers of technology enhanced learning. Instructional science, 43, 173-179.
Kedzior, M., & Fifield, S. (2004). Teacher professional development.
Kirkwood, A., & Price, L. (2014). Technology-enhanced learning and teaching in higher education: what is ‘enhanced’and how do we know? A critical literature review. Learning, media and technology, 39(1), 6-36.
Kurvinen, E., Kaila, E., Laakso, M. J., & Salakoski, T. (2020). Long term effects on technology enhanced learning: The use of weekly digital lessons in mathematics. Informatics in Education, 19(1), 51-75.
Laurillard, D., Oliver, M., Wasson, B., & Hoppe, U. (2009). Implementing technology-enhanced learning. Technology-enhanced learning: Principles and products, 289-306.
Maharaj, A. (2010). An APOS analysis of students' understanding of the concept of a limit of a function. Pythagoras, 2010(71), 41-52. https://doi.org/10.4102/pythagoras.v0i71.6
Maharaj, A. (2014). An APOS analysis of natural science students’ understanding of integration. Journal of Research in Mathematics Education, 3(1), 54-73. https://doi.org/10.4471/redimat.2014.40
Meyer, D. K., & Turner, J. C. (2006). Reconceptualizing emotion and motivation to learn in classroom contexts. Educational Psychology Review,18, 377-390. https://doi.org/10.1007/s10648-006-9032-1
Mih, V., Mih, C., & Dragoş, V. (2015). Achievement goals and behavioral and emotional engagement as precursors of academic adjusting. Procedia-Social and Behavioral Sciences, 209, 329-336. https://doi.org/10.1016/j.sbspro.2015.11.243
Ningsih, Y. L., & Darmawijoyo, Y. H. (2015, April). DEVELOPING STUDENTS’WORKSHEET OF DERIVATIVE BASED ON APOS THEORY. The Third South East Asia Design/Development Research. International Conference.
Özdemir, F., İlhan, A., & Aslaner, R. (2024). The effect of ACE cycle based instruction on geometry self-efficacy beliefs in polygons learning area. Learning and Motivation, 86, 101985. https://doi.org/10.1016/j.lmot.2024.101985
Palobo, M., Sulaiman, R., & Rahaju, E. B. (2025). Construction of the Area of Rectangle Concept from the Perspective of APOS Theory. TEM Journal, 14(1). https://doi.org/10.18421/TEM141-14
Parraguez, M., & Oktaç, A. (2010). Construction of the vector space concept from the viewpoint of APOS theory. Linear algebra and its applications, 432(8), 2112-2124. https://doi.org/10.1016/j.laa.2009.06.034
Putwain, D. W., & Wood, P. (2023). Riding the bumps in mathematics learning: Relations between academic buoyancy, engagement, and achievement. Learning and Instruction, 83, 101691. https://doi.org/10.1016/j.learninstruc.2022.101691
Scott, S., & Palincsar, A. (2013). Sociocultural theory.
Serrano, D. R., Dea‐Ayuela, M. A., Gonzalez‐Burgos, E., Serrano‐Gil, A., & Lalatsa, A. (2019). Technology‐enhanced learning in higher education: How to enhance student engagement through blended learning. European Journal of Education, 54(2), 273-286.
Shernoff, D. J., Kelly, S., Tonks, S. M., Anderson, B., Cavanagh, R. F., Sinha, S., & Abdi, B. (2016). Student engagement as a function of environmental complexity in high school classrooms. Learning and Instruction, 43, 52-60. https://doi.org/10.1016/j.learninstruc.2015.12.003
Skinner, E. A., & Belmont, M. J. (1993). Motivation in the classroom: Reciprocal effects of teacher behavior and student engagement across the school year. Journal of educational psychology, 85(4), 571. https://doi.org/10.1037/0022-0663.85.4.571
Spiro, R. J. (2017). Remembering information from text: The “state of schema” approach. In Schooling and the acquisition of knowledge (pp. 137-165). Routledge. https://doi.org/10.4324/9781315271644-11
Thanheiser, E., & Melhuish, K. (2023). Teaching routines and student-centered mathematics instruction: The essential role of conferring to understand student thinking and reasoning. The Journal of Mathematical Behavior, 70, 101032. https://doi.org/10.1016/j.jmathb.2023.101032
Thompson, P. (2010). Learning by doing. Handbook of the Economics of Innovation, 1, 429-476. https://doi.org/10.1016/S0169-7218(10)01010-5
Tsafe, A. K. (2024). Effective mathematics learning through APOS theory by dint of cognitive abilities. Journal of Mathematics and Science Teacher, 4(2), 1-8. https://doi.org/10.29333/mathsciteacher/14308
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes (Vol. 86). Harvard university press.
Vygotsky, L. S. (1997). The collected works of L. S. Vygotsky, Vol. 4: The history of the development of higher mental functions (R. W. Rieber, Vol. Ed; M. J. Hall, Trans.). New York: Plenum Press. (Original work published 1941)
Wang, A. I., & Tahir, R. (2020). The effect of using Kahoot! for learning–A literature review. Computers & Education, 149, 103818. https://doi.org/10.1016/j.compedu.2020.103818
Woods, P. J., & Copur-Gencturk, Y. (2024). Examining the role of student-centered versus teacher-centered pedagogical approaches to self-directed learning through teaching. Teaching and Teacher Education, 138, 104415. https://doi.org/10.1016/j.tate.2023.104415
Yang, Q. F., Lin, C. J., & Hwang, G. J. (2021). Research focuses and findings of flipping mathematics classes: A review of journal publications based on the technology-enhanced learning model. Interactive Learning Environments, 29(6), 905-938.
Ysseldyke, J., & Bolt, D. M. (2007). Effect of technology-enhanced continuous progress monitoring on math achievement. School Psychology Review, 36(3), 453-467.
Zamecnik, A., Kovanović, V., Joksimović, S., & Liu, L. (2022). Exploring non-traditional learner motivations and characteristics in online learning: A learner profile study. Computers and Education: Artificial Intelligence, 3, 100051. https://doi.org/10.1016/j.caeai.2022.100051
Zimmerman, B. J., & Risemberg, R. (1997). Self-regulatory dimensions of academic learning and motivation. In G. Phye (Ed.), Handbook of academic learning, pp. 105–125. New York: Academic Press. https://doi.org/10.1016/B978-012554255-5/50005-3