| 研究生: |
黃信榮 Shin-zung Huang |
|---|---|
| 論文名稱: |
基於立體視覺手勢辨識的人機互動系統 Human-Machine Interaction Using Stereo Vision-based Gesture Recognition |
| 指導教授: |
陳慶瀚
Ching-han Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 人機互動 、手勢辨識 |
| 外文關鍵詞: | Human-Computer Interaction, Hand Gesture Recognition |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前消費型電子產品朝向更便利、人性化的人機互動界面發展。不經由直接碰觸,而藉身體姿態與機器進行互動,已經成為一個重要的研究趨勢。本論文提出一個基於立體視覺手勢辨識的人機互動系統,將雙攝影機架設於電腦螢幕上方,鏡頭拍攝螢幕前方空間。假設操控電腦的手掌為距離螢幕最近的物體,利用類神經網路求得像差與影像深度的映射模型,接著針對所找出之最近的物體進行手指偵測,並藉由手指的數目與位置定義出不同靜態手勢,最後建立以不同手勢間狀態轉移與狀態執行動作的動態手勢模型,系統中不同的動態手勢分別表示不同的人機互動指令。 實驗結果顯示,藉由立體視覺方法可有效且精確地找出手掌位置,無頇耗費過多運算成本於複雜背景中取出手掌。我們的動態手勢模型辨識方法所達到的辨識率與其他研究方法相差不大,但計算複雜度較低,而且當系統要加入新的手勢,只需添加新的狀態轉移描述即可,無需重新訓練動態手勢模型。因此我們的方法為未來不斷衍生的新的人機互動應用,提供了一個高度彈性的、高效率而可靠的人機互動方法。
At present, the development of consumer electronic products focuses on more convenient and friendly interactive interface. Through the body posture interacting with machine without direct touch has become an important research trend. This paper presents a stereo vision-based gesture recognition system of human-computer interaction. Two cameras are set on the computer screen, and the Lens Shooting is in front of screen. Assuming the hand which controls the computer is the nearest object to the screen. We use the neural network to achieve the mapping model of aberrations and image depth. We detect the fingers after the nearest object is found, and the static gestures are defined by the numbers of finger. Finally, the dynamic gesture model is established on the state transfer of different static gestures and the action of states. Different dynamic gestures indicate the different human-computer interaction commands. Based on the stereo vision, the location of hand can be efficiently and accurately identified by the experiments. And we don’t need to waste too much cost on finding the hand in a complex background. Our dynamic gestures recognition efficiency is the same as other research, and the complexity is low than others. When the system wants to add a new gesture, a new description of the state transition is required. It has no need to retrain the dynamic gesture model. Therefore, the system we present here provides a highly flexible, efficient and reliable human-computer interaction method.
[1] T.M. Mahmoud. “A New Fast Skin Color Detection Technique”, Processing of World Academy of Science, Engineering And Technology Volume 33 ISSN p.2070-3740 Sept 2008
[2] J.D. Smith, T.C.N. Graham, D. Holman, Jan Borchers “Low-Cost Malleable Surfaces with Multi-Touch Pressure Sensitivity”, In Proc. IEEE tabletop p. 205-208. 2007
[3] D. Wigdor, G. Perm, K. Ryall, A. Esenther and C. Shen, “Living with a Tabletop: Analysis and Observations of Long Term Office Use of a Multi-Touch Table”, IEEE Tabletop, p.60 – 67, 2007
[4] J.B. Hiley, A.H. Redekopp and R. Fazel-Rezai, “A Low Cost Human Computer Interface based on Eye Tracking”, Engineering in Medicine and Biology Society, EMBS ''06, 2006
[5] A. Krolak and P. Strumiłło, “Vision-Based Eye Blink Monitoring System for Human-Computer Interfacing”, IEEE conference on Human System Interactions, p.994-998, 2008 [6] G. Shin and J. Chun, “Vision-Based Multimodal Human Computer Interface Based on Parallel Tracking of Eye and Hand Motion”, IEEE International Conference on Convergence Information Technology, p.2443 – 2448, Nov. 2007
[7] A. Jaimes and N. Sebe, “Multimodal Human Computer Interaction: A Survey”, IEEE International Workshop on Human Computer Interaction in conjunction with ICCV, Beijing (China), p.116-134, Oct. 2005
[8] C. Manresa, J. Varona, R. Mas and F. Perales, “Hand tracking and gesture recognition for human-computer interaction”, ELCVIA, vol. 5, no. 3, p.96–104, 2005
[9] K. Oka, Y. Sato and H. Koike, “Real-time tracking of multiple fingertips and gesture recognition for augmented desk interface systems”, In IEEE International Conference on Automatic Face and Gesture Recognition, 2002
[10] S. Lenman, L. Bretzner, B. Thuresson, “Computer Vision Based Hand Gesture Interfaces for Human-Computer Interaction”, Technical report RITANA D0209, CID-report, June 2002
[11] C. Shan, Y. Wei, T. Tan and O. Ojardias, “Real time hand tracking by combining particle filtering and mean shift”, In Proc. Int. Conf. on Auto. Face and Gesture Recognition, p.669–674, 2004
[12] S. Ongkittikul, S. Worrall and A. Kondoz, “Two Hand Tracking using Colour Statistical Model with the K-means Embedded Particle Filter for Hand Gesture Recognition”, Computer Information Systems and Industrial Management Applications, CISIM ''08. 7th, p.201-206, June 2008
[13] G.Welch and G. Bishop, “An introduction to the kalman filter”, Technical Report 95-041, University of North Carolina, Department of Computer Science, 1995.
[14] C. Yang, R. Duraiswami and L. Davis, “Fast multiple object tracking via a hierarchical particle filter”, In Proc. of International Conference on Computer Vision and Pattern Recognition, p.212–219, 2005
[15] Y. Li, H. Ai, T. Yamashita, S. Lao and M. Kawade, “Tracking in low frame rate video: A cascade particle filter with discriminative observers of different lifespans”, CVPR, p.1–8, 2007
[16] S. Young, “HTK: Hidden Markov Model Toolkit”, Cambridge Univ. Eng.Dept. Speech Group and Entropic Research Lab. Inc.,Washington, DC,1993
[17] F. Wang, C.W. Ngo and T.C. Pong, “Simulating a Smartboard by Real-Time Gesture Detection in Lecture Videos”, IEEE Transactions on Multimedia, Vol. 10, No. 5, p.926-935, Aug 2008
[18] Q. Chen, N.D. Georganas and E.M. Petriu, “Hand Gesture Recognition Using Haar-Like Features and a Stochastic Context-Free Grammar”, IEEE Transactions on Instrumentation and Measurement, Vol. 57, No. 8, p.1562-1571, Aug 2008
[19] P. Viola and M. Jones, “Robust real-time object detection”, Intl. J. Computer Vision, 57(2):137–154, 2004
[20] K. S. Fu, “Syntactic Pattern Recognition and Application”, Englewood Cliffs, NJ: Prentice-Hall, 1982 [21] J. Kim, J. Park, H. Kwan and K.C. Lee, “HCI (Human Computer Interaction) Using Multi‐Touch Tabletop Display”, In: Communications, Computer and Signal Processing, IEEE, Victoria, p.391 – 394, 2007
[22] Y. Ma and X. Ding, “Robust real-time face detection based on cost-sensitive adaboost method”, In Proc. ICME, volume 2, p.465–472, 2003
[23] P. Premaratne and Q. Nguyen, “Consumer electronics control system based on hand gesture moment invariants”, Computer Vision, IET, p.35–41, 2007
[24] M. Hu, “Visual Pattern Recognition by Moment Invariants”, IEEE Trans. Information Theory, Vol. 8, p.179-187, 1962
[25] H.I. Suk, B.K. Sin and S.W. Lee, “Robust Modeling and Recognition of Hand Gestures with Dynamic Bayesian Network”, IEEE International Conference on Pattern Recognition, p.1-4, Dec. 2008
[26] D. Chai and K.N. Ngan, “Face segmentation using skin-color map in videophone applications”, IEEE Transactions on Circuits and Systems for Video Technology, p.551-564, Jun. 1999
[27] H. Ying, J. Song, X. Ren and W. Wang, “Fingertip detection and tracking using 2D and 3D information”, World Congress on Intelligent Control and Automation, p.1149-1152, Jun. 2008
[28] S. Malik, “Real-time Hand Tracking and Finger Tracking for Interaction”, http://www.cs.toronto.edu/~smalik/downloads/2503_project_report.pdf。Dec. 2003
[29]楊國棟: Wii介紹, 取自http://www2.nuk.edu.tw/lib/e-news/20071101/3-3.htm。
[30]唐國豪, 「人機互動」, 《科學發展》2003年8月,368期,18~23頁
[31]科學人雜誌網站, 取自http://sa.ylib.com/circus/circusshow.asp?FDocNo=10。
[32]Apple iPhone, Available: http://www.apple.com/iphone/technology/。
[33] P. Dietz and D. Leigh, "Diamondtoucn: a multi-user touch technology", in UIST''01: Proceedings of the 14th annual ACM symposium on User interface software and technology. New York, NY, USA: ACM, p.219-226, 2001
[34] S. Hodges, S. Izadi, A. Butler, A. Rrustemi and B. Buxton, "ThinSight: Versatile Multi-touch Sensing for Thin Form-factor Displays", in UIST''07: Proceedings of the 20th ACM symposium on User interface software and technology. Newport, Rhode Island, USA: ACM, p.259-268, 2007
[35] J. Y. Han, "Low-cost multi-touch sensing through frustrated total internal reflection", in UIST''05: Proceedings of the 18th ACM symposium on User interface software and technology. Seattle, Wahington, USA: ACM, p.115-118, 2005
[36] P. Moghadam, W.S. Wijesoma and D.J. Feng, “Improving path planning and mapping based on stereo vision and lidar”, 10th International Conference on Control, Automation, Robotics and Vision, p.384 – 389, 2008
[37] H.H.P. Wu, Y.H. Yu and W.C. Chen,” Projective rectification based on relative modification and size extension for stereo image pairs”, IEE Proceedings -Vision, Image and Signal Processing, p.623 – 633, Oct. 2005