跳到主要內容

簡易檢索 / 詳目顯示

研究生: 趙柏宇
Bo-Yu Chao
論文名稱: 以無線自動聽性腦幹響應量測系統發展V波自動判別之方法
Development of Auto-Detection Method for Wave V with a Wireless Automated Auditory Brainstem Response (AABR) Measurement System
指導教授: 吳炤民
Chao-Min Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 77
中文關鍵詞: 聽性腦幹響應自動聽性腦幹響應新生兒聽力篩檢自動判別第V波
外文關鍵詞: Auditory Brainstem Response (ABR), Automated Auditory Brainstem Response (AABR), Newborn Hearing Screening, Auto-Detection Method for Wave V
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中華民國的新生兒聽力篩檢已經日益普遍,中華民國衛生福利部國民健康署也補助自動聽性腦幹響應 (Automated Auditory Brainstem Response, AABR) 作為新生兒的聽力篩檢,在聽性腦幹響應 (Auditory Brainstem Response, ABR) 量測時會產生七個波,當中以I、III和V波最為明顯,而一般偵測新生兒有聽力受損的方法,是以辨別第V波的存在與否。
    先前的研究所開發之AABR量測系統使用卡爾曼濾波器 (Kalman Filter) 與指數權重平均演算法 (Exponential Weighted Average, EWA) 自動偵測到的結果和第V波的結果及判別,但仍需要人為去截取第V波畫面,為了改善此半自動的判別方式,本研究更以二次指數權重平均演算法 (Second Exponential Weighted Average),改善高雜訊的AABR,以便於辨別,除了比較先前卡爾曼加指數的演算法,也與以往常被使用的單點變異數演算法 (Variance Of A Single Point, Fsp) 做比較,而本研究也比較了三種自動辨別法來選擇最好的方法,分別為快速傅利葉 (Fast Fourier Transform, FFT) 、圖像分析法 (Image and Pattern Analysis 99, IPAN99) 和微方判別法 (Differential) ,最後選擇較快速且準確的微分判別法。
    為了評估此方法的可行性,本研究實驗一對5名年齡23到26歲正常聽力之男性和1名聽力受損之男性進行實驗,本研究所使用的方法產生第V波的反應時間約在6至7.5ms之間,雖然波形反應時間會較長 (多0.5ms) ,但是卻能消除大部分之雜訊,而波形也更容易觀察,及自動辨識並截取畫面,又可以免除主觀的人為判斷,實驗二則對2名正常聽力的受試者,在聽力室沒有關門的情況下測量ABR訊號,由於背景噪音過大,導致無法測量到ABR訊號,所以本研究在量測ABR波形適用於聽力室內做檢查,否則環境中的聲音可能會影響結果而量測不到,本研究所使用之演算法和自動判別法確實改善了先前研究設備的顯示波形過多雜訊和辨識第V波時需要人為去截取畫面缺點,使得此系統更為完整。


    With the growing popularity of the newborn hearing screening, R.O.C. Ministry of Health and Welfare subsidize infant hearing screening with Automated Auditory Brainstem Response. The Auditory Brainstem Response typically has seven waves when measured. Wave I、III and V are obvious than all the other waves. Detecting wave V is the common method used to identify hearing loss.
    Previous studies used Kalman Filter with Exponential Weighted Average in an AABR measurement system, but its detecting method still required manual screenshots. Therefore, the semi-automatic detecting method need to be improved. This study uses the Second Exponential Weighted Average approach to improve the detection of ABR signals under noisy condition. In addition to compare the kalman filter with Exponential Weighted Average, the proposed approach also compares Variance of a Single Point used to calculate in ABR. The compared three methods evaluated in this study are the Fast Fourier Transform method, Image and Pattern Analysis 99 method and the Differential method. The Differential method has been chosen for its fast processing speed and accuracy.
    In order to assess the feasibility of our approach, 5 male subjects with normal hearing and 1 male subject with hearing loss were participated in the first experiment. Wave V wave latencies were measured between 6 and 7.5ms. Although this method has longer latency (0.5ms), it can eliminate most noises, and the ABR waves are easier to be observed. It can automatically recognize and take screenshots to avoid undesired subjective human judgment. In the second experiment, ABR signals from 2 of previous 5 normal hearing subjects were measured in a hearing exam room without closing the door. With significant background noises in this situation, ABR signals were not measured as the result. Consequently, this study is carried out in hearing exam rooms, to avoid interference of background noises on the measurement of ABR signals. This algorithm and the auto-detection method developed from this study actually improve the previous research's problems about the waveforms which contained too many interference and need to take screenshot manually. Therefore, this study makes our system more complete.

    摘要 i ABSTRACT iii 致謝 v 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1研究動機 1 1.2研究目的 6 1.3文獻探討 7 1.4成果貢獻 12 1.5論文架構 13 第二章 聽性腦幹響應與無線AABR量測系統 14 2.1聽性腦幹響應(ABR)原理 14 2.2無線AABR量測系統 20 第三章 ABR訊號處理演算法與自動判別第V波之方法 23 3.1ABR訊號處理演算法 23 3.2自動判別第V波之方法 35 第四章 實驗流程及結果分析與討論 40 4.1實驗流程 40 4.2結果分析與討論 43 第五章 結論與展望 49 5.1結論 49 5.2展望 50 參考文獻 52 附錄A 58 附錄B 61

    Baldwin, M., and Watkin P. (2013). “Predicting the Degree of Hearing Loss Using Click Auditory Brainstem Response in Babies Referred from Newborn Hearing Screening”, Ear & Hearing, Vol. 34, pp. 361-369

    Cone, B., and Norrix L.W. (2015). “Measuring the Advantage of Kalman-Weighted Averaging for Auditory Brainstem Response Hearing Evaluation in Infants”, American Journal of Audiology, Vol. 24, pp. 153-168

    Dedhia, K., Kitsko, D., Sabo, D., and Chi D. H. (2013). “Children with Sensorineural Hearing Loss after Passing the Newborn Hearing Screen”, JAMA Otolaryngol Head & Neck Surg., Vol. 139, pp. 119-123

    Delgado, R. E., and Özdamar, Ö. (1994). “Automated Auditory Brainstem Response Interpretation”, IEEE Eng. Med. Biol., Vol. 13, pp. 227-237.

    Dzulkarnain, A. A. A. B., Hadi, U. S. A. H., and Zakaria, N. A. (2013). “The effects of stimulus rate and electrode montage on the auditory brainstem response in infants”, Speech, Language and Hearing, Vol. 16, pp. 221-226.

    Elberling, C., Callo, J., and Don, M. (2010). “Evaluating Auditory Brainstem Responses to Different Chirp Stimuli at Three Levels of Stimulation”, J. Acoust. Soc. Am, Vol. 128, pp. 215-223

    Elberling, C., and Don, M. (1984). “Quality Estimation of Averaged Auditory Brainstem Response”, Scand Audiol, Vol. 13, pp. 187-197.

    Georgiadis, S. D., Ranta-aho, P. O., Tarvainen, M. P., and Karjalainen, P. A. (2005). “Single-Trial Dynamical Estimation of Event- Related Potentials: A Kalman Filter-Based Approach”, IEEE Trans. Biomed. Eng., Vol. 52, pp. 1397-1406.

    Gronfors, T. and Juhola, M. (1995). “Effect of Sampling Frequencies and Averaging Resolution on Medical Parameters of Auditory Brainstem Responses”, Biol. Med., Vol. 25, pp. 447-454.

    Gorga, M. P. and Thomton, A. R. (1989). “The Choice of Stimuli for ABR Measurements”, Ear and Hearing, Vol. 10, pp.217-230

    Ikawa, N., Morimoto, A., and Ashino, R. (2014). “The Detection of the Relation of the Stimulus Intensity-Latency of Auditory Brainstem Reresponse Using Optimal Wavelet Analysis”, International Conference on Wavelet Analysis and Pattern Recognition, pp13-16.

    Jacobson, J. T., Jacobson, C. A., and Spahr, R. C. (1990). “Automated and Conventional ABR Screening Techniques in High-Risk Infants”, J. Am. Acad. Audiol., pp187-195

    Jamieson, D. G., and Slawinski, E. B. (1988). “Recovery of the Auditory Brainstem Response by Sign-Bit and Conventional Averaging”, IEEE Trans. Biomed. Eng., Vol. 35, pp. 308-315.

    Jerger, J., Hayes, D., and Jordan, C. (1980). “Clinical Experience with Auditory Brainstem Response Audiometry in Pediatric Assessment”, Ear and Hearing, Vol. 1, pp. 19-25.

    Jewett, D. L. (1970). “Volume-Conducted Potentials in Response to Auditory Stimuli as Detected by Averaging in the Cat”, Electroenceph. clin. Neurophysiol, Vol. 28, pp. 609-618.

    Jewett, D. L., and Williston, J. S. (1971). “Auditory-Evoked Far Fields Averaged from the Scalp of Humans”, Brain, Vol. 94, pp. 681-696.

    Kemp, D. T. (1978). “Stimulated Acoustic Emissions from within the Human Auditory System”, J. Acoust. Soc. Am., Vol. 64, pp. 1386-1391.

    Levit, Y., Himmelfarb, M., and Dollberg, S. (2016). “Sensitivity of the Automated Auditory Brainstem Response in Neonatal Hearing Screening”, Pediatrics, Vol. 136, pp. e641-e647.

    Lotfi, Y. and Abdollahi F. Z. (2012). “Age and Gender Effects on Auditory Brain Stem Responsen (ABR)”, Iranian Rehabilitation Journal, Vol. 10, pp. 30-36.

    Maloff, E. S. and Hood, L. J. (2014). “A Comparison of Auditory Brain Stem Responses Elicited by Click and Chirp Stimuli in Adults with Normal Hearing and Sensory Hearing Loss”, Ear & Hearing, Vol. 35, pp. 271-282

    Omar, M. H., Salleh, S. H. S., Ming T. C., Suraya, R. A., Kamarulafizam, and Swee T. T. (2012). “Kalman Filter for ABR Signal Analysis”, Progress In Electromagnetics Research Symposium Proceedings, pp. 27-30.

    Ravikumar, G., and Murthy, V.A. (2015). “A Study of Brainstem Auditory Evoked Responses in Normal Hearing Patients with Tinnitus”, Indian J Otolaryngol Head Neck Surg.

    Robinette, M. S., and Glattke, T. J. (2007). “Otoacoustic Emissions Clinical Applications Third ed”. Thieme Medical Publishers, Inc., New York.

    Rosa, L. A. C., Suzuki, M. R., Angrisani, R. G. and Azevedo, M. F. (2014). “Auditory Brainstem Response: Reference-Values for Age”, CoDAS., Vol. 26, pp. 117-121.

    Stach, B. A. (1988). Clinical Audiologic, Singular Publishing Group Inc., San Diego, London.

    Starr, A., Amlie, R. N., Martin, W. H., and Sanders S. (1977). “Development of Auditory Function in Newborn Infants Revealed by Auditory Brainstem Potentials”, Pediatrics, Vol. 60, pp.831-839.

    Sininger, Y. S., and Hyde, M. (2001). “Power-Optimized Cumulative,Sequential Statistical Method for Detection of Auditory Evoked Potentials”, United States Patent., US 6,200,273 B1.

    Sininger, Y. S., Hyde, M., and Don, M. (2001). “Method for Detection on Auditory Evoked Potentials Using a Point Optimized Variance Ratio”, United States Patent., US 6,196,977 B1.

    Spitzer, E., White-Schwoch, T., Carr, K. W., Skoe, E., and Kraus, N. (2015). “Continued Maturation of the Click-Evoked Auditory Brainstem Response in Preschools”, J. Am. Acad. Audiol., Vol. 26, pp. 30-35.

    Stürzebecher, E., Cebulla, M., and Neumann, K. (2003). “Click-Evoked ABR at High Stimulus Repetition Rates for Neonatal Hearing Screening”, Int. J. Audiol., Vol. 42, pp. 59-70.

    Trzaskowski, B., Jedrzejczak, W. W., Pilka, E., Kochanek, K., and Skarzynski, H. (2013). “Automatic Removal of Sonomotor Waves from Auditory Brainstem Responses”, Computers in Biology and Medicine, Vol. 43, pp. 524-532.

    Valderrama, J. T., Torre, A., Alvarez, I., Segura, J. C., Thornton, A. R. D., Sainz, M., and Vargas, J. L. (2013). “A Portable, Modular, and Low Cost Auditory Brainstem Response Recording System Including an Algorithm for Automatic Identification of Responses Suitable for Hearing Screening”, IEEE Point-of-Care Healthcare Technologies, pp. 16 – 18.

    Valderrama, J. T., Torre, A., Alvarez, I., Segura, J. C., Thornton, A. R. D., Sainz, M., and Vargas, J. L. (2014). “Automatic Quality Assessment and Peak identification of Auditory Brainstem Responses with Fitted Parametric Peaks”, Comput. Meth. Prog. Biomed., Vol. 114, pp. 262-275.

    Wilson, W. J., Winter, M., Nohr, C., and Aghdasi, F. (1998). “Signal Processing of The Auditory Brainstem Response: Clinical Effects of Variations in Fast Fourier Transform Analysis”, IEEE, pp. 23-28

    Wilson, W. J., and Aghdasi, F. (1999). “Fast Fourier Transform Analysis of The Auditory Brainstem Response: Effects of Stimulus Intensity and Subject Age, Gender and Test Ear”, IEEE, pp. 285-290

    World Health Organization, W.H.O. (2017/2/10), http://www.who.int/mediacentre/factsheets/fs300/en/

    林聖凱 (2015). “以嵌入式系統及Android為平台之無線自動聽性腦幹響應 (AABR)量測系統,” 碩士論文, 國立中央大學電機工程學系。

    劉致中 (2011). “以個人數位助理為平台之短暫誘發耳聲傳射檢測儀,” 碩士論文, 國立中央大學電機工程學系。

    衛生福利部國民健康署 (2014), 新生兒聽力篩檢與確診指引手冊。

    QR CODE
    :::