跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐健紘
Chien-hung Hsu
論文名稱: YAG 螢光粉摻雜散射粒子之光學模型
Study of YAG-Phosphor Modeling with Adding Scattering Particles
指導教授: 孫慶成
Ching-cherng Sun
楊宗勳
Tsung-hsun Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 95
中文關鍵詞: 螢光粉散射粒子發光二極體
外文關鍵詞: phosphor, particle, LED
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究致力於建立一套 YAG 螢光粉摻雜 ZrO2 散射粒子之光學模型,依循孫慶成博士團隊所建立之螢光粉模型之流程,加入散射粒子後並在模型中引進等效折射率以及等效粒徑之概念,利用實驗模擬計算得到螢光粉摻雜散射粒子之重要特性參數。其中包含等效散射模型建立、等效吸收係數與等效轉換係數之模擬計算,並以實際封裝與模擬進行頻譜、色座標與封裝效率等驗證。最後,利用此模型進一步探討 YAG 螢光粉摻雜 ZrO2 散射粒子對封裝效率、螢光粉減量與色彩空間均勻性之影響,及 ZrO2 摻雜後之物理影響與解釋。


    In this thesis, we have developed an optical model of YAG phosphor with mixing ZrO2 scattering particles. The process of optical modeling is based on the traditional phosphor optical modeling procedure established by Dr. Sun’s group. By following the process, we obtain a set of effective parameters, such as the effective scattering model, effective absorption coefficient, and conversion efficiency in both experiment and simulation. In the verification, the chromatic performances and packaging efficiency of the real LEDs are measured and compared with the modeling simulation. Then we use the new optical model to study of packaging efficiency, phosphor reduction and angular correlated-color-temperature deviation with YAG phosphor adding ZrO2 scattering particles. The properties of adding ZrO2 is summarized in the final.

    摘要 I Abstract II 致謝 III 目次 V 圖次 VIII 表次 XIII 第一章 緒論 1 1.1 前言 1 1.2 LED 發展 2 1.3 研究動機與目的 5 1.4 論文大綱 6 第二章 基本原理 7 2.1 LED 發光原理 7 2.2 螢光粉發光原理 8 2.2.1 螢光與磷光 8 2.2.2 螢光粉材料結構 10 2.2.3 史托克位移 11 2.2.4 螢光粉輻射特性 12 2.3 色彩學 14 2.3.1 RGB 色度系統 14 2.3.2 CIE XYZ 16 2.3.3 相關色溫 18 第三章 螢光粉摻雜散射粒子之光學模型 20 3.1 散射模型 21 3.2 等效折射率與等效粒徑 28 3.3 等效吸收係數與轉換係數 34 3.3.1 藍光光源模型建立 34 3.3.2 吸收轉換係數 37 3.4 光學模型驗證 44 3.4.1 色座標與頻譜之驗證 45 3.4.2 空間色偏之驗證 49 3.4.3 封裝效率之驗證 50 3.5 光學模型探討與總結 52 第四章 螢光粉摻雜散射粒子之分析 54 4.1 封裝效率及螢光粉減量之分析 54 4.2 空間色偏之探討 60 4.3 結論 61 第五章 結論 63 參考文獻 66 中英文對照表 73

    [1] A. Zukauskas, M. Shur, and R. Gaska, Introduction to solid-state lighting (J. Wiley & Sons, New York, 2002).
    [2] N. Holonyak Jr and S. Bevacqua, “Coherent (visible) light emission from Ga (As1− xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
    [3] S. Nakamura, S. Pearton, and G. Fasol, The blue laser diode: the complete story (Springer, Germany, 1997).
    [4] T. Moriguchi, Y. Noguchi, K. Sakano, and Y. Shimizu, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
    [5] S. Muthu, “Controlling method and system for RGB based LED luminary,” United States Patent, US 6507159 (2003).
    [6] S. Muthu, F. J. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron 8, 333-338 (2002).
    [7] H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors,” IEEE Photon. Technol. Lett. 17, 1160-1162 (2005).
    [8] 陳靜儀,白光LED之螢光粉多功能模型之研究,國立中央大學光電科學與工程學系博士論文,中華民國一百零一年。
    [9] 彭逸寧,雙粉分層螢光粉光學模型之建立與分析,國立中央大學光電科學與工程學系碩士論文,中華民國一百零一年。
    [10] T. F. McNulty, D. D. Doxsee, and J. W. Rose, “UV reflectors and UV-based light sources having reduced UV radiation leakage incorporating the same,” United States Patent, US 6686676 B2 (2004).
    [11] J. K. Sheu, S. J. Chang, C. Kuo, Y. K. Su, L. Wu, Y. Lin, W. Lai, J. Tsai, G. C. Chi, and R. Wu, “White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors,” IEEE Photon. Technol. Lett. 15, 18-20 (2003).
    [12] P. C. Wang, Y. K. Su, C. L. Lin, and G. S. Huang, “Improving Performance and Reducing Amount of Phosphor Required in Packaging of White LEDs With TiO₂-Doped Silicone,” IEEE Electron. Dev. Lett. 35, 657-659 (2014).
    [13] P. C. Wang, C. L. Lin, and Y. K. Su, “Enhancement of Light Extraction Efficiency in GaN-Based Blue Light-Emitting Diodes by Doping TiO2 Nanoparticles in Specific Region of Encapsulation Silicone,” Jpn. J. Appl. Phys. 52, 08JG15 (2013).
    [14] Y. R. Kang, K. H. Kim, W. H. Kim, S. W. Jeon, M. S. Jang, J. S. Kwak, and J. P. Kim, “Utilization of silicone microspheres: Improving color uniformity and reducing the amount of phosphor used in white light-emitting diodes,” IEEE Trans. Ade. Packag. Technol. 3 (2013).
    [15] H. C. Chen, K. J. Chen, C. C. Lin, C. H. Wang, H. V. Han, H. H. Tsai, H. T. Kuo, S. H. Chien, M. H. Shih, and H. C. Kuo, “Improvement in uniformity of emission by ZrO2 nano-particles for white LEDs,” Nanotechnol. 23, 265201 (2012).
    [16] F. W. Mont, J. K. Kim, M. F. Schubert, E. F. Schubert, and R. W. Siegel, “High-refractive-index TiO2-nanoparticle-loaded encapsulants for light-emitting diodes,” J. Appl. Phys. 103, 083120 (2008).
    [17] C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T. H. Yang, “Precise optical modeling for silicate-based white LEDs,” Opt. Express 16, 20060-20066 (2008).
    [18] 陳靜儀,矽酸鹽螢光粉用於白光LED之光學模型,國立中央大學光電科學與工程學系碩士論文,中華民國九十七年。
    [19] 紀葦世,高效能YAG螢光粉之特性量測與模型,元智大學光電工程研究所碩士論文,中華民國九十九年。
    [20] 何信穎,白光LED之YAG螢光粉光學模型之研究,國立中央大學光電科學與工程學系碩士論文,中華民國九十六年。
    [21] 郭冠廷,不同激發光螢光粉模型之分析,國立中央大學光電科學與工程學系碩士論文,中華民國一百零一年。
    [22] M. C. Teich and B. Saleh, “Fundamentals of photonics,” (Wiley Interscience, Canada, 1991).
    [23] D. A. Neamen and B. Pevzner, Semiconductor physics and devices: basic principles (McGraw-Hill, New York, 2003).
    [24] B. G. Streetman and S. Banerjee, Solid state electronic devices (Prentice-Hall Englewood Cliffs, New Jersey, 1995).
    [25] 大田登,色彩工程學理論與應用,全華圖書股份有限公司,台北縣,中華民國九十七年。
    [26] A. Jaboski, “Efficiency of anti-Stokes fluorescence in dyes,” Nature 131, 839-840 (1933).
    [27] D. B. Judd and G. Wyszecki, Color in business, science and industry (Wiley-Interscience, New York, 1975).
    [28] T. Smith and J. Guild, “The CIE colorimetric standards and their use,” Trans. Opt. Soc. 33, 73 (1931).
    [29] The Colour & Vision Resrarch Laboratory, http://www.cvrl.org/.
    [30] W. R. Gilks, Markov chain monte carlo in practice (Chapman and Hall, London, 1996).
    [31] S. J. Lee, “Analysis of light-emitting diodes by Monte Carlo photon simulation,” Appl. Opt. 40, 1427-1437 (2001).
    [32] D. Z. Ting and T. C. McGill Jr, “Monte Carlo simulation of light-emitting diode light-extraction characteristics,” Opt. Eng. 34, 3545-3553 (1995).
    [33] Y. Shuai, N. T. Tran, and F. G. Shi, “Nonmonotonic phosphor size dependence of luminous efficacy for typical white LED emitters,” IEEE Photon. Technol. Lett. 23, 552-554 (2011).
    [34] N. T. Tran, J. P. You, and F. G. Shi, “Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED,” J. Lightwave Technol. 27, 5145-5150 (2009).
    [35] H. C. Hulst and H. Van De Hulst, Light scattering by small particles (Courier Dover Publications, New York, 1957).
    [36] C. A. Costa, C. A. Leite, and F. Galembeck, “Size dependence of Stöber silica nanoparticle microchemistry,” J. Phys. Chem. B 107, 4747-4755 (2003).
    [37] E. F. Schubert, J. K. Kim, H. Luo, and J. Xi, “Solid-state lighting—a benevolent technology,” Rep. Prog. Phys. 69, 3069 (2006).
    [38] D. Aspnes, J. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292 (1979).
    [39] D. Stroud, “Generalized effective-medium approach to the conductivity of an inhomogeneous material,” Phys. Rev. B 12, 3368 (1975).
    [40] P. Drude, “Zur elektronentheorie der metalle,” Ann. Phys. 306, 566-613 (1900).
    [41] M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Cambridge University Press, London, 1999).
    [42] K. Jacobsen, J. Norskov, and M. Puska, “Interatomic interactions in the effective-medium theory,” Phys. Rev. B 35, 7423 (1987).
    [43] Cree, Inc., http://www.cree.com
    [44] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
    [45] C. C. Chang, R. L. Chern, C. C. Chang, C. C. Chu, J. Y. Chi, J. C. Su, I.-M. Chan, and J. F. T. Wang, “Monte Carlo simulation of optical properties of phosphor-screened ultraviolet light in a white light-emitting device,” Jpn. J. Appl. Phys. 44, 6056 (2005).
    [46] P. Chýlek, “Light scattering by small particles in an absorbing medium,” J. Opt. Soc. Am. 67, 561-563 (1977).
    [47] Q. Fu and W. Sun, “Mie theory for light scattering by a spherical particle in an absorbing medium,” Appl. Opt. 40, 1354-1361 (2001).
    [48] A. Borbely and S. G. Johnson, “Performance of phosphor-coated LED optics in ray trace simulations,” Proc. SPIE 5530, 266-273 (2004).
    [49] Á. Borbély and S. G. Johnson, “Performance of phosphor-coated light-emitting diode optics in ray-trace simulations,” Opt. Eng. 44, 111308 (2005).
    [50] T. X. Lee, K. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt. Express 15, 6670-6676 (2007).
    [51] I. Moreno, D. Bermúdez, and M. Avendaño-Alejo, “Light-emitting diode spherical packages: an equation for the light transmission efficiency,” Appl. Opt. 49, 12-20 (2010).
    [52] S. Lester, F. Ponce, M. Craford, and D. Steigerwald, “High dislocation densities in high efficiency GaN‐based light‐emitting diodes,” Appl. Phys. Lett. 66, 1249-1251 (1995).
    [53] C. Y. Chen, T. H. Yang, C. H. Hsu, and C. C. Sun, “High-efficiency white LED packaging with reduced phosphor concentration,” IEEE Photon. Technol. Lett. 25, 694-696 (2013).
    [54] 陳鶴祥,分層雙色白光LED封裝效率及色彩表現之研究,國立中央大學光電科學與工程學系碩士論文,中華民國一百零一年。
    [55] C. C. Sun, C. Y. Chen, C. C. Chen, C. Y. Chiu, Y. N. Peng, Y. H. Wang, T. H. Yang, T. Y. Chung, and C. Y. Chung, “High uniformity in angular correlated-color-temperature distribution of white LEDs from 2800K to 6500K,” Opt. Express 20, 6622-6630 (2012).

    QR CODE
    :::