| 研究生: |
邱柏龍 Bo-Lung Chiu |
|---|---|
| 論文名稱: |
壽命具指數分配之串聯系統恆定應力與階段應力加速壽命試驗的比較 Comparison of Constant-Stress and Step-Stress Accelerated Life Tests for Series Systems under Exponentila Life Distribution |
| 指導教授: |
樊采虹
Tsai-Hung Fan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 串聯系統 、指數分配 、階段應力加速壽命試驗 、恆定應力加速壽命試驗 、型一設限 、V-準則 、D-準則 、A-準則 、等效試驗計畫 |
| 外文關鍵詞: | series system, exponential distribution, step-stress ALT, constant-stress ALT, Type-I censoring, V-optimality, D-optimality, A-optimality, equvalent plan |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在可靠度分析中, 加速壽命試驗是指將受測物件置於較正常使用下嚴厲的環境應力中,
以縮短試驗時間的一種方法。本文考慮受測物件是由兩個零件串聯而成, 且零件平均壽
命服從獨立的指數分配, 分別在V-準則、D-準則與A-準則下, 探討兩應力水準恆定
應力加速壽命試驗(two-level constant-stress ALT , CSALT) 與兩應力水準階段應力加速壽命試驗(two-level step-stress ALT , SSALT) 之最佳化問題, 並比較兩最佳化試驗之優劣。在型一設限下, 可由數值結果看出最佳SSALT 在三個準則下皆優於最佳CSALT ; 在無設限下, 我們証明了兩最佳化試驗可得到相同的估計精確度。另外我們以最佳CSALT 作為基準試驗進行SSALT 之等效試驗計畫, 探討在三個準則下之成本效益, 並以實際例子說明, SSALT 只需較少的樣本數或可以縮短試驗的時間。
Accelerated life testing (ALT) is a process of testing products by subjecting it to strict
conditions, in order to observe more failure data in a short time period. In this thesis,
we consider the ALT of series system, each consists of two components whose life time
distributions follow independent exponential distributions. Optimal designs on the sample
allocation for the two-level constant-stress ALT(CSALT) and on the time for changing stress
levels for the two-level step-stress ALT(SSALT) are considered based on V-optimality, D-
optimality and A-optimality, respectively. Under Type-I censoring, it shows, by numerical
results, that the optimal SSALT is better than the optimal CSALT in terms of the resulting
objective functions. We also prove that the two optimal ALTs are indeed equivalent without
censoring. In addition, we use the optimal CSALT as the baseline ALT to obtain an equivalent
SSALT plan. A real data is analyzed to demonstrate the performance of both ALT plans
under the three optimality criteria as well as the equivalent test plans.
參考文獻
[1] Bai, D.S. and Chun, Y.R. (1991). “Optimum simple step-stress acceler-
ated life-tests with competing causes of failure.” IEEE Transactions on
Reliability, 40, 622-627.
[2] Bai, D.S. and Chung, S.W. (1992). “Optimal design of partially accel-
erated life tests for the exponential distribution under type-I censor-
ing.” IEEE Transactions on Reliability, 41, 400-406.
[3] Bai, D.S., Kim, M.S. and Lee, S.H. (1989). “Optimum simple step-stress
accelerated life tests with censoring.” IEEE Transactions on Reliability
, 38, 528-532.
[4] Bai, D.S. and Kim, M.S. (2006). “Optimum simple step-stress accelerated
life tests for weibull distribution and type I censoring.” Naval Research
Logistics, 40, 193-210.
[5] Balakrishnan, N. and Han, D. (2009). “Optimal step-stress testing for
progressively Type-I censored data from exponential distribution.” Jour-
53
nal of Statistical Planning and Inference, 139, 1782-1798.
[6] Ge, Z., Li, X., Jiang, T. and Huang, T. (2011). “Optimal design for step-
stress accelerated degradation testing based on D-optimality.” Reliability
and Maintainability Symposium (RAMS) 2011 Proceedings-Annual, 1, 1-
6.
[7] Hu, C.H., Plante, R.D. and Tang, J. (2012). “Step-stress accelerated life
tests: a proportional hazards-based non-parametric model.” Quality &
Reliability Engineering International, 79, 955-963.
[8] Ismail, A.A. (2009). “Optimum constant-stress partially accelerated life
test plans with Type-II censoring: The case of weibull failure distribu-
tion.” International Journal of Statistics & Economics, 3, S09.
[9] Khamis, I.H. (1997). “Comparison between constant and step-stress tests
for Weibull models.” International Journal of Quality & Reliability Management
, 14, 74-81.
[10] Khamis, I.H. and Higgins, J.J. (1998). “A new model for step-stress test-
ing.” IEEE Transactions on Reliability, 47, 131-134.
[11] Nelson, W.B. (1980). “Accelerated life testing – step-stress models and
data analysis.” IEEE Transactions on Reliability, 29, 103-108.
54
[12] Nelson,W.B. (1990). Accelerated Testing: StatisticalModels, Test Plans,
and Data Analyses. Wiley, New York.
[13] Peng, C.Y. (2012). “A note on optimal allocations for the second ele-
mentary symmetric function with applications for optimal reliability de-
sign.” Naval Research Logistics, 59, 278-284.
[14] Wu, S.J., Lin, Y.P. and Chen, Y.J. (2006). “Planning step-stress life test
with progressively type I group-censored exponential data.” Statistica
Neerlandica, 60, 46-56.
[15] Yang, G.B. (1994). “Optimum constant-stress accelerated life-test
plans.” IEEE Transactions on Reliability, 43, 575-581.
[16] Zhu, Y. and Elsayed, E.A. (2011). “Design of equivalent accelerated life
testing plans under different stress applications.” Quality Technology &
Quantitative Management, 8, 463-478.