跳到主要內容

簡易檢索 / 詳目顯示

研究生: 莊心慈
Hsin-Tzu Chuang
論文名稱: 觸媒及臭氧催化氧化去除氣流中甲苯之可行性探討
Removal of Toluene from Gas Streams via Catalyst Catalysis and Ozone Catalytic Oxidation
指導教授: 張木彬
Moo-Been Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 74
中文關鍵詞: Perovskite-type觸媒甲苯揮發性有機污染物催化臭氧催化氧化
外文關鍵詞: perovskite-type catalyst, toluene, volatile organic pollutants, catalysis, ozone catalytic oxidation
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工業製程使用之揮發性有機污染物(VOCs)種類繁多,由於其物化特性易於製造或加工過程中揮發,衍生VOCs逸散問題,甲苯為典型之有機化合物,常被作為設備元件的清潔劑。VOCs不僅存在於各種行業,亦為評估室內空氣品質之重要指標,長期暴露在空氣品質不佳環境,易導致頭暈、乏力及情緒起伏等症狀。本研究以perovskite-type觸媒為基礎,開發新穎之triple perovskite-type觸媒,並探討觸媒製備過程中添加氨水及觸媒表面改質,進一步強化觸媒催化活性之可行性。本研究主軸概分為兩個部分,一為triple perovskite-type觸媒於熱催化系統之應用,另一則是利用觸媒結合臭氧技術進行臭氧催化氧化(ozone catalytic oxidation, OZCO)應用於甲苯去除。結果顯示triple perovskite-type觸媒對甲苯去除具有高活性,尤其是La3MnCuCuO9-NH3 (KMnO4)觸媒,於熱催化系統中(進流濃度為500 ppm),於250℃對C7H8之轉化率及礦化率分別達100%及83%;於臭氧催化氧化系統中(進流濃度為20 ppm、O3/C7H8=8;室溫),反應6個小時內維持100%的轉化效率,而礦化率於4個小時內維持高礦化率(100%),反應測試5個小時後逐漸降低至85%。觸媒的物化特性分析結果顯示La3MnCuNiO9-NH3 (KMnO4)具有較高之比表面積及孔體積,分別為26.74 m2/g及0.16 cm3/g,且具有高比率之吸附氧與Mn4+及多價態之Cu與Ni,增加觸媒的催化活性,進而促進甲苯氧化反應。臭氧催化氧化主要生成之產物為CO2與H2O(g),其去除機制主要是O3於triple perovskite-type觸媒表面分解為具強氧化能力的活性氧(O*、O2*),在臭氧催化反應過程中為關鍵物種,配合觸媒之高催化活性,實現室溫條件之甲苯氧化反應,未來於工業廢氣處理及室內空品之應用潛力大。


    Various types of volatile organic pollutants (VOCs) are used in industrial processes. Due to their physical and chemical properties, VOCs can easily evaporate during the manufacturing or processing, resulting in fugitive emissions. VOCs are not only present in various industries, but are also important indicators for assessing indoor air quality. Toluene is a typical organic compound that is often used as a cleaning agent for equipment components. Prolonged exposure to poor air quality can lead to symptoms such as dizziness, fatigue, and mood swings. In this study, we developed a novel triple perovskite-type catalyst and investigated the feasibility of adding ammonia and applying catalyst surface modification to further enhance the catalytic activity of the catalysts in the preparation process. The main emphasis of this study includes two parts, one is the application of triple perovskite-type catalyst in thermal catalytic system, and the other is the application of ozone catalytic oxidation (OZCO) for toluene removal using catalyst combined with ozone technology. The results showed that triple perovskite-type catalysts developed were highly active for toluene removal, especially La3MnCuNiO9(n,k) catalyst. In the thermal catalytic system ([C7H8] = 500 ppm), the conversion and mineralization rates of C7H8 at 250°C reached 100% and 83%, respectively. In the ozone catalytic oxidation system ([C7H8] = 20 ppm, O3/C7H8=8; room temperature), the conversion efficiency was maintained at 100% for 6 hours, and the mineralization rate was maintained at a high rate for 4 hours, and gradually decreased to 85% after 5 hours of reaction. The physical and chemical analysis of the catalyst showed that La3MnCuNiO9(n,k) has a high specific surface area and pore volume of 26.74 m2/g and 0.16 cm3/g, respectively. Catalysts with high ratios of Oabs/(Oabs+Olat), Mn4+/(Mn4++Mn3+) and Cu2+ as well as multivalent Ni enhance the catalytic activity which in turn promotes oxidation of toluene. The main products of ozone catalytic oxidation are CO2 and H2O(g), and the removal mechanism is mainly via the decomposition of O3 on the surface of triple perovskite-type catalyst into reactive oxygen species (O*, O2*) with strong oxidizing ability. In the ozone catalytic reaction process, active oxygen generated facilitate the oxidation of toluene at room temperature. The results obtained indicate that this catalyst has great potential for industrial waste gas treatment and indoor air applications.

    第一章 前言 1 1.1 研究緣起 1 1.2 研究目的 3 第二章 文獻回顧 4 2.1 揮發性有機物之簡介 4 2.1.1 揮發性有機物之定義及種類 4 2.1.2 揮發性有機物之來源及危害 4 2.1.3 揮發性有機物之傳統控制技術 5 2.2 甲苯性質 7 2.3 觸媒催化技術 9 2.3.1 觸媒催化之機制 9 2.3.2 Perovskite-type 觸媒 10 2.3.3 Perovskite-type 觸媒改質 14 2.4 臭氧催化氧化程序 17 2.4.1 臭氧性質與應用 17 2.4.2 臭氧催化分解 18 2.5 動力學分析 18 2.5.1 Mars-Van Krevelen model 19 2.5.2 Plug Flow Reactor 20 第三章 研究方法 22 3.1 研究流程及架構 22 3.2 觸媒製備方法與流程 24 3.2.1 Perovskite-type觸媒 24 3.2.2 改質之Perovskite-type觸媒 25 3.3 觸媒之物化特性分析 25 3.4 甲苯降解實驗 27 3.4.1 Perovskite-type觸媒活性測試 27 3.4.2 臭氧催化氧化實驗 27 3.4.3 實驗分析 28 3.5 實驗設備、藥品及氣體 31 3.5.1 實驗設備 31 3.5.2 實驗結果計算 32 3.5.3 實驗藥品 33 第四章 結果與討論 34 4.1 觸媒特性分析 34 4.1.1 X光粉末繞射儀(XRD)晶相鑑定 34 4.1.2 觸媒之物理特性分析 37 4.1.3 觸媒之XPS分析 37 4.1.4 觸媒反應前後之熱重損失分析(TGA) 39 4.2 熱催化對C7H8去除效率之探討 41 4.2.1 不同觸媒對C7H8之去除效率 41 4.2.2 觸媒改質對C7H8去除效率之影響 44 4.2.3 催化反應之動力分析 46 4.3 臭氧催化氧化去除C7H8之探討 47 4.3.1 臭氧之催化分解 47 4.3.2 觸媒吸附與脫附 48 4.3.3 低濃度C7H8之臭氧催化氧化探討 48 4.3.4 臭氧催化氧化去除不同C7H8與O3比之效率 49 4.3.5 機制探討 52 第五章 結論與建議 55 5.1 結論 55 5.2 建議 56 參考文獻 58

    Aghbolaghy, M.; Soltan, J.; Chen, N., Role of surface carboxylates in the gas phase ozone-assisted catalytic oxidation of toluene. Catalysis Letters 2017, 147, (9), 2421-2433.
    Bijelic, J.; Stankovic, A.; Matasovic, B.; Markovic, B.; Bijelic, M.; Skoko, Z.; Popovic, J.; Stefanic, G.; Jaglicic, Z.; Zellmer, S., Structural characterization and magnetic property determination of nanocrystalline Ba3Fe2WO9 and Sr3Fe2WO9 perovskites prepared by a modified aqueous sol–gel route. CrystEngComm 2019, 21, (2), 218-227.
    Bijelic, J.; Stankovic, A.; Medvidovic-Kosanovic, M.; Markovic, B.; Cop, P.; Sun, Y.; Hajra, S.; Sahu, M.; Vukmirovic, J.; Markovic, D., Rational sol–gel-based synthesis design and magnetic, dielectric, and optical properties study of nanocrystalline Sr3Co2WO9 triple perovskite. The Journal of Physical Chemistry C 2020, 124, (23), 12794-12807.
    Cao, R.; Zhang, P.; Liu, Y.; Zheng, X., Ammonium-treated birnessite-type MnO2 to increase oxygen vacancies and surface acidity for stably decomposing ozone in humid condition. Applied Surface Science 2019, 495, 143607.
    Chang, T.; Shen, Z.; Huang, Y.; Lu, J.; Ren, D.; Sun, J.; Cao, J.; Liu, H., Post-plasma-catalytic removal of toluene using MnO2–Co3O4 catalysts and their synergistic mechanism. Chemical Engineering Journal 2018, 348, 15-25.
    Chung, W. C.; Mei, D. H.; Tu, X.; Chang, M. B., Removal of VOCs from gas streams via plasma and catalysis. Catalysis Reviews 2019, 61, (2), 270-331.
    Deng, L.; Ding, Y.; Duan, B.; Chen, Y.; Li, P.; Zhu, S.; Shen, S., Catalytic deep combustion characteristics of benzene over cobalt doped Mn-Ce solid solution catalysts at lower temperatures. Molecular Catalysis 2018, 446, 72-80.
    Dong, Y.; Zhao, J.; Zhang, J.-Y.; Chen, Y.; Yang, X.; Song, W.; Wei, L.; Li, W., Synergy of Mn and Ni enhanced catalytic performance for toluene combustion over Ni-doped α-MnO2 catalysts. Chemical Engineering Journal 2020, 388, 124244.
    Fang, R.; Huang, W.; Huang, H.; Feng, Q.; He, M.; Ji, J.; Liu, B.; Leung, D. Y., Efficient MnOx/SiO2@ AC catalyst for ozone-catalytic oxidation of gaseous benzene at ambient temperature. Applied Surface Science 2019, 470, 439-447.
    Ferreira, T.; Carone, D.; Huon, A.; Herklotz, A.; Stoian, S. A.; Heald, S. M.; Morrison, G.; Smith, M. D.; Loye, H. C. z., Ba3Fe1.56Ir1.44O9: A polar semiconducting triple perovskite with near room temperature magnetic ordering. Inorganic Chemistry 2018, 57, (12), 7362-7371.
    Huang, H.; Li, W., Destruction of toluene by ozone-enhanced photocatalysis: performance and mechanism. Applied Catalysis B: Environmental 2011, 102, (3-4), 449-453.
    Li, B.; Yang, Q.; Peng, Y.; Chen, J.; Deng, L.; Wang, D.; Hong, X.; Li, J., Enhanced low-temperature activity of LaMnO3 for toluene oxidation: The effect of treatment with an acidic KMnO4. Chemical Engineering Journal 2019, 366, 92-99.
    Li, W.; Gibbs, G.; Oyama, S. T., Mechanism of ozone decomposition on a manganese oxide catalyst. In situ Raman spectroscopy and ab initio molecular orbital calculations. Journal of the American Chemical Society 1998, 120, (35), 9041-9046.
    Lu, H.; Kong, X.; Huang, H.; Zhou, Y.; Chen, Y., Cu–Mn–Ce ternary mixed-oxide catalysts for catalytic combustion of toluene. Journal of Environmental Sciences 2015, 32, 102-107.
    Mefford, J. T.; Hardin, W. G.; Dai, S.; Johnston, K. P.; Stevenson, K. J., Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nature Materials 2014, 13, (7), 726-732.
    Mi, R.; Li, D.; Hu, Z.; Yang, R. T., Morphology Effects of CeO2 Nanomaterials on the Catalytic Combustion of Toluene: A combined kinetics and diffuse reflectance infrared fourier transform spectroscopy study. ACS Catalysis 2021, 11, 7876-7889.
    Naydenov, A.; Mehandjiev, D., Complete oxidation of benzene on manganese dioxide by ozone. Applied Catalysis A: General 1993, 97, (1), 17-22.
    Pan, J.; Du, W.; Liu, Y.; Cheng, Y.; Yuan, S., Lanthanum-doped Cu Mn composite oxide catalysts for catalytic oxidation of toluene. Journal of Rare Earths 2019, 37, (6), 602-608.
    Pan, K. L.; Pan, G. T.; Chong, S.; Chang, M. B., Removal of VOCs from gas streams with double perovskite-type catalysts. Journal of Environmental Sciences 2018, 69, 205-216.
    Ryu, H. W.; Song, M. Y.; Park, J. S.; Kim, J. M.; Jung, S. C.; Song, J.; Kim, B. J.; Park, Y. K., Removal of toluene using ozone at room temperature over mesoporous Mn/Al2O3 catalysts. Environmental Research 2019, 172, 649-657.
    Shao, J.; Lin, F.; Wang, Z.; Liu, P.; Tang, H.; He, Y.; Cen, K., Low temperature catalytic ozonation of toluene in flue gas over Mn-based catalysts: Effect of support property and SO2/water vapor addition. Applied Catalysis B: Environmental 2020, 266, 118662.
    Si, W.; Wang, Y.; Peng, Y.; Li, J., Selective dissolution of A‐site cations in ABO3 perovskites: A new path to high‐performance catalysts. Angewandte Chemie 2015, 127, (27), 8065-8068.
    Sophiana, I.; Topandi, A.; Iskandar, F.; Devianto, H.; Nishiyama, N.; Budhi, Y., Catalytic oxidation of benzene at low temperature over novel combination of metal oxide based catalysts: CuO, MnO2, NiO with Ce0.75Zr0.25O2 as support. Materials Today Chemistry 2020, 17, 100305.
    Tian, Y.; Zhang, X.; Tang, B.; Cui, Z.; Zhang, G.; Chen, Z.; Wang, H., SF6 abatement in a packed bed plasma reactor: study towards the effect of O2 concentration. RSC Advances 2019, 9, (60), 34827-34836.
    Tomar, A. K.; Joshi, A.; Singh, G.; Sharma, R. K., Triple perovskite oxide as an advanced pseudocapacitive material: multifarious element approach with an ordered structure. Journal of Materials Chemistry A 2020, 8, (45), 24013-24023.
    USEPA, Control techniques for volatile organic emissions from stationary, U.S.EPA, EPA-450/2-78-022 (1978).
    Vannice, M. A., An analysis of the Mars–van Krevelen rate expression. Catalysis Today 2007, 123, (1-4), 18-22.
    Voorhoeve, R.; Johnson, D.; Remeika, J.; Gallagher, P., Perovskite oxides: materials science in catalysis. Science 1977, 195, (4281), 827-833.
    Waxman, H. A., An overview of the clean air act amendments of 1990. Envtl. L. 1991, 21, 1721.
    Wu, M.; Chen, S.; Xiang, W., Oxygen vacancy induced performance enhancement of toluene catalytic oxidation using LaFeO3 perovskite oxides. Chemical Engineering Journal 2020, 387, 124101.
    Wu, M.; Zhan, W.; Guo, Y.; Guo, Y.; Wang, Y.; Wang, L.; Lu, G., An effective Mn-Co mixed oxide catalyst for the solvent-free selective oxidation of cyclohexane with molecular oxygen. Applied Catalysis A: General 2016, 523, 97-106.
    Yang, R.; Han, P.; Fan, Y.; Guo, Z.; Zhao, Q.; Wang, Y.; Che, S.; Lin, S.; Zhu, R., The performance and reaction pathway of δ-MnO2/USY for catalytic oxidation of toluene in the presence of ozone at room temperature. Chemosphere 2020, 247, 125864.
    Yang, X.; Yu, X.; Lin, M.; Ma, X.; Ge, M., Enhancement effect of acid treatment on Mn2O3 catalyst for toluene oxidation. Catalysis Today 2019, 327, 254-261.
    Zang, M.; Zhao, C.; Wang, Y.; Chen, S., A review of recent advances in catalytic combustion of VOCs on perovskite-type catalysts. Journal of Saudi Chemical Society 2019, 23, (6), 645-654.
    Zhang, G.; Liu, G.; Wang, L.; Irvine, J. T., Inorganic perovskite photocatalysts for solar energy utilization. Chemical Society Reviews 2016, 45, (21), 5951-5984.
    Zhang, R.; Luo, N.; Yang, W.; Liu, N.; Chen, B., Low-temperature selective catalytic reduction of NO with NH3 using perovskite-type oxides as the novel catalysts. Journal of Molecular Catalysis A: Chemical 2013, 371, 86-93.
    Zhang, Y.; Anninos, P.; Norman, M. L., A multispecies model for hydrogen and helium absorbers in Lyman Alpha forest clouds. The Astrophysical Journal Letters 1995, 453, (2), L57.
    Zhong, J.; Zeng, Y.; Chen, D.; Mo, S.; Zhang, M.; Fu, M.; Wu, J.; Su, Z.; Chen, P.; Ye, D., Toluene oxidation over Co3+-rich spinel Co3O4: Evaluation of chemical and by-product species identified by in situ DRIFTS combined with PTR-TOF-MS. Journal of Hazardous Materials 2020, 386, 121957.
    林文川,製程VOCs廢氣之收集與處理,工業污染防治技術手冊,經濟部工業局,台灣 (2010)
    梁旭昇,結合臭氧與氧化錳觸媒去除氯苯之研究,國立中央大學環境工程研究所博士論文,台灣 (2010)
    梁煜申,鈀觸媒處理焚化廢氣中 CO、NO 之動力研究,國立中興大學環境工程研究所碩士論文,台灣 (2003)。
    潘冠綸,Double perovskite-type 觸媒結合非熱電漿去除揮發性有機污染物之可行性探討,國立中央大學環境工程研究所博士論文,台灣 (2017)
    鄭立群,以非熱電漿處理 CF4及SF6之效率探討,中央大學環境工程研究所學位論文,台灣 (2006)
    儲憶凡,以電漿觸媒系統提升臭氧稱生成效率之可行性評估,國立中央大學環境工程研究所博士論文,台灣 (2020)。

    QR CODE
    :::