| 研究生: |
許立成 Li-Cheng Hsu |
|---|---|
| 論文名稱: |
On the Spectrum of Trees |
| 指導教授: |
黃華民
Hua-Min Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 26 |
| 中文關鍵詞: | Bethe樹 |
| 外文關鍵詞: | $v$-symmetric eigenvector, symmetric eigenvector, skew symmetric vector, symmetric vector, $i$-level subtree of Bkn, Bethe tree, $i$-level set |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在1984年,Godsil 定義了 Bethe樹圖B(k,n),並求出其譜半徑
ho的上界滿足 $rho<2sqrt{k}$。在我們這篇論文中,我們找出Bethe樹圖的譜,利用此結論,我們又證明了任一樹圖T 的譜半徑滿足
$$sqrt{Delta}leq
ho< min{2sqrt{Delta-1}cos{(frac{pi}{D+2})},2sqrt{Delta}cos{(frac{pi}{r+2})}},$$
其中D,r,Delta分別為此樹圖的直徑,半徑,與最大度數。此下界等號成立只發生在當T為完全二部圖K_{1,Delta}時。
In 1984, Godsil defined the Bethe tree $B(k,n)$ and showed the spectral radius $
ho$ of $B(k,n)$ satisfies $
ho<2sqrt{k}$.
In this thesis, we find the spectrum of $B(k,n)$. With this spectrum, we also show the spectral radius $
ho$ of a tree $T$ satisfies
$$sqrt{Delta}leq
ho< min{2sqrt{Delta-1}cos{(frac{pi}{D+2})},2sqrt{Delta}cos{(frac{pi}{r+2})}},$$
where $D$,$r$,$Delta$ are the diameter, radius, and the maximum degree of $T$ respectively. The equality of lower bound holds only when $T=K_{1,Delta}$.
[1] L. Collatz, U. Sinogowitz, Spektren Endlicher Grafen, Abh. Math. Sem. Univ. Hamburg
21 (1957) 63-77.
[2] R.A. Brualdi, A.J. HoIman, On the spectral radius of a (0;1) matrix, Linear Algebra
Appl. 65 (1985) 133-146.
[3] R.P. Stanley, A bound on the spectral radius of graphs with e edges, Linear Algebra
Appl. 67 (1987) 267-269.
[4] Y. Hong, A bound on the spectral radius of graphs, Linear Algebra Appl. 108 (1988)
135-140.
[5] D. Stevanovic, Bounding the largest eigenvalue of tree in terms of the largest vertex
degree, Linear Algebra Appl. 360 (2003) 35-42.
[6] C.D.Godsil, Spectra of trees, Ann. Disc. Math. 20(1984) 151-159.
[7] Y. Hong, J.-L. Shu, K. Fang, A sharp upper bound of the spectral radius of graphs, J.
Combin. Theory Ser. B 81 (2001) 177-183.
[8] A. Berman, X.-D. Zhang, On the spectral radius of graphs with cut vertices, J. Combin.
Theory Ser. B 83 (2001) 233-240.
[9] S. Hu, The largest eigenvalue of unicyclic graphs, Discrete Mathematics 307(2007) 280-
284.
[10] D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ (2001).