| 研究生: |
何惠雯 Huan-Wen He |
|---|---|
| 論文名稱: |
具等候時間窗口限制之零工式生產排程工作順序之決定 |
| 指導教授: |
沈國基
Gwo-Ji Sheen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業管理研究所 Graduate Institute of Industrial Management |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 等候時間窗口 、枝界法 、零工式生產環境 、第k長的最短路徑 |
| 外文關鍵詞: | time windows, branch and bound, job-shop, the k-th shortest path |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究首先探討單一機器排程問題,了解相依時間窗口限制之特性,並發展一演算法決定單機排程問題,爾後再將其結果擴展應用到多台機器問題上。在其求解單一機器排程問題之過程中,首先以分離圖建立模式,以分枝的方式展開可能的作業操作順序,計算各作業節點之可開始操作時間(release time)區間,將相依時間轉換成絕對時間,導入時間窗口一致性的概念,淘汰掉一些不可行的操作順序分枝,並以定界的方式儘早排除掉一些操作順序分枝;將單一機器問題之結果擴展應用到多台機器生產環境時,除了原有的相依時間窗口限制的特性外,還多了多台機器間相互的影響,如搶作業的情形發生,另外有個差異點,則是在多台機器生產環境中,為符合後續作業之等候時間窗口的限制,各工作未必接於時間點零開始操作,可經由延後某些作業的操作而使其為可行的操作順序,而在延後的過程中,本研究中每一個線段上之等候時間為整數(integer number),並把分離圖轉換成多機網圖,多機示意圖再轉成網圖,以融入the k-th shortest path演算法去做作業操作時間的調整,以尋找出最佳的操作順序及其完成時間。
參考文獻
1.許淑芬, “具等候時間窗口限制之零工式生產排程問題,”國立中央大
學研究所碩士論文, 1998.
2.Adams, J., Balas, E., and Zawack, D., “The Shifting
Bottleneck Procedure for Job Shop Scheduling,” Management
Science, 34(3), 1989, pp 391-401.
3.Ahn, B. H., and Shin, J. Y., “Vehicle-routing with Time
Windows and Time-varying Congestion,” Journal of Operational
Research Society, 42, 1991, pp 393-400.
4.Armstrong, R., and Lei, L., and Gu, S., “A Bounding Scheme
for Deriving the Minimal Cycle Time of a Single-transporter N-
stage Process with Time-window Constraint,” European Journal
of Operational Research, 78, 1994 ,pp 130-140.
5.Carlier, J., and Pinson, E., “An Algorithm for Solving the
Job-shop Problem,” Management Science, 35, 1989, pp 164-176.
6.Carlier, J., and Pinson, E., “Adjustments of Heads and Tails
for the Job-shop Scheduling Problem,” In the European
Journal of Operational Research, 78, 1994, pp 146-161.
7.Desrosiers, J., Soumis, F., Desrochers, M., and Sauve., M.,
“Methods for Routing with Time Windows,” European Journal of
Operational Research, 23, 1986, pp 236-245.
8.Desrochers, J., Desrosiers, M., and Solomom, M., “A New
Optimization Algorithm for the Vehicle Routing Problem with
Time Windows ,” Operations Research, 40, 1992, pp 342-354.
9.Desrosiers, J., Dumas, Y., Gelinas, E., and Solomom, M., “An
Optimal Algorithm for the Traveling Salesman Problem with
Time Windows,” Operations Research, 43, 1995, pp 367-371.
10.Fisher, M., and Jaikumar, R., “A Generalized Assignment
Heuristic for Vehicle Routing,” Networks, 11(2), 1981, pp
109-124.
11.Gillett, B., and Miller, L., “A Heuristic Algorithm for the
Vehicle Dispatch Problem,” Operations research, 22, 1974,
pp 340-349.
12.Grabowski, J., and Janiak, A., “Job Shop Scheduling with
Resource - Time Models of Operations,” European Journal of
Operational Research, 28, 1987, pp 58-73.
13.Kolen , A., Rinnooy Kan, A. H. G., and Trienekens, H. W. J.
M., “Vehicle Routing with Time Windows,” Operations
Research, 35, 1987, pp 266-273.
14.Koskosidis, Y. A., and Powell, W. B., “Clustering
Algorithms for Consolidation of Customer Orders into Vehicle
Shipments,” Transportation Research-B, 26B, 1992, pp 365-
379.
15.Lei, L., and Wang, T. J., “A proof: The Cyclic Hoist
Scheduling Problem is NP-complete,” Working paper No.89-16,
Rutger University, August 1989.
16.Lei, L., and Wang, T. J., “The Minimum Common-cycle
Algorithm for Cycle Scheduling of Time Windows
Constraints,” Management Science, 37/12,1991, pp 1629-1639.
17.Levy, L., and Bodin, L., “Scheduling the Postal Carriers
for the United States Postal Service : An Application of Arc
Partitioning and Routing,” In: Golden, B. L. and Assad, A.
A. (eds.), Vehicle Routing: Methods and Studies,North-
Holland,1988.
18.Phillips, D. T., and Alberto, G. D., “Fundamentals of
Network Analysis,” Prentice-Hall, Chapter 2, 1981, pp 72-90.
19.Phillips, L. W., and Unger, P. S., “Mathematical
Programming Solution of a Hoist Scheduling Program,” AIIE
Transactions, 8/2, 1976, pp 219-225.
20.Psaraftis, H., “An Exact Algorithm for the Single Vehicle
Many-to-many Dail-a-ride Problem with Time Windows,”
Transportation Science, 17, 1983, pp 351-360.
21.Shapiro, G. W., and Nuttle, H. W., “Hoist Scheduling for a
PCB Electroplating Facility,” AIIE Transactions, 20/2,
1988, pp 157-167.
22.Shier, D. R., “Iterative Methods for Determining the k
Shortest Paths in a Network,” Networks, 6, 1976, pp 205-230.
23.Swersey, A. J., and Ballard, W., “Scheduling School
Buses,” Management Science, 30, 1984, pp 844-853.
24.Yamada, T., and Nakano, R., “Job-shop Scheduling,” Genetic
Algorithms in Engineering Systems, Chapter 7, 1997, pp 134-
160.
25.Yang, D. L., and Chern, M. S.,“A Two Machine Flow shop
Sequencing Problem with Limited Waiting Time Constraints,”
Computers and Industrial Engineering, 28/2, 1994, pp 63-70.
26.Yih, Y., Liang, T. P., and Moskowitz, H., “Robot Scheduling
in a Circuit Board Production Line a Hybrid OR/ANN
Approach,” AIIE Transactions, 1993.