跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張佐鴻
Tso-Hung Chang
論文名稱: 紅外線穩態熱阻量測法之石墨層影響之研究
Research on the influence of graphite layer to the steady state thermal resistance measurement method using infrared irradiation
指導教授: 鍾德元
Te-Yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 72
中文關鍵詞: 熱阻石墨
外文關鍵詞: thermal resistance, graphite
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 紅外線穩態熱阻量測法是一套具有高適應性及非接觸式的熱阻量測法,而在量測法中使用到的石墨粉雖能方便量測,但其卻也導致熱源覆蓋的部份溫度會有量不準的問題,因此本論文先藉由有限元素分析法探討石墨層帶來的影響,並根據熱阻的定義,在模擬中取出熱流傳遞方向物體之截面積變化,再以線性擬合的方式歸納出一個函數形式,用以推算物體表面最熱點溫度,最後進行實驗並與模擬結果做相互驗證。


    Measurement of thermal resistance with infrared at steady state is a high adaptive and non-contact measuring method for thermal resistance. However, the graphite layer is convenient for measuring method, but it also brings out a problem that causes the temperature error on the heat source area. Therefore, in this research, finite element analysis (FEA) method is used to discuss temperature error from graphite layer. Accor-
    ding to definition of thermal resistance, finding the effective cross-
    sectional area along heat transfer propagation direction and using linear fitting to find a functional form which is used to calculate the highest temperature on the surface of sample. At last, performing experiment confirm simulation result.

    摘要 I Abstract. II 致謝 III 圖目錄 VI 表目錄 X 第一章 緒論 1 1-1前言 1 1-2研究動機 4 第二章 基礎理論 6 2-1引言 6 2-2發光二極體發熱原理 6 2-3熱傳遞基本理論 7 2-3-1熱傳導 8 2-3-2熱對流 11 2-3-3熱輻射 12 2-4熱阻 13 第三章 模擬分析 17 3-1有限元素分析流程 17 3-2模擬模型建立與探討石墨層造成的影響 18 3-3模擬結果及數學式推導 22 3-3-1有效熱傳導面積在不同熱源半徑下比較 25 3-3-2以數學式表示有效熱傳導面積隨位置的變化 27 3-4案例分析 31 3-4-1熱絕緣與自然對流比較 31 3-4-2雙點熱源 33 第四章 實驗結果與分析 36 4-1實驗架構及流程 36 4-2實驗結果與誤差分析 39 第五章 結論與未來展望 55 5-1結論 55 5-2未來展望 56 參考文獻 57

    [1] "經濟部能源局,2012年能源產業技術白皮書第三章 http://web3.moeaboe.gov.tw/."
    [2] H. J. Round, "A note on carborundum," Electrical world, vol. 49, p. 309, 1907.
    [3] N. Holonyak and S. F. Bevacqua, "COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1−xPx) JUNCTIONS," Applied Physics Letters, vol. 1, pp. 82-83, 1962.
    [4] J. W. Allen, M. E. Moncaster, and J. Starkiewicz, "Electroluminescent devices using carrier injection in gallium phosphide," Solid-State Electronics, vol. 6, pp. 95-102, 3// 1963.
    [5] H. Grimmeiss and H. Scholz, "Efficiency of recombination radiation in GaP," Physics Letters, vol. 8, pp. 233-235, 1964.
    [6] C. Nuese, J. Tietjen, J. Gannon, and H. Gossenberger, "Optimization of Electroluminescent Efficiencies for Vapor‐Grown GaAs1− x P x Diodes," Journal of The Electrochemical Society, vol. 116, pp. 248-253, 1969.
    [7] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, "Thermal annealing effects on p-type Mg-doped GaN films," Japanese Journal of Applied Physics, vol. 31, p. L139, 1992.
    [8] S. Nakamura, M. Senoh, N. Iwasa, and S.-i. Nagahama, "High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures," JAPANESE JOURNAL OF APPLIED PHYSICS PART 2 LETTERS, vol. 34, pp. L797-L797, 1995.
    [9] 許世杰, "節能照明技術-淺談發光二極體," 科學月刊, vol. 532期, 04 2014.
    [10] "Cree. http://www.cree.com/LED-Components-and-Modules/Products/XLamp/Discrete-Directional/XLamp-XML2."
    [11] 陳憬憲, "穩態紅外線LED封裝熱阻量測," 碩士, 光電科學研究所, 國立中央大學, 桃園縣, 2010.
    [12] J. M. Herrin and D. Deming, "Thermal conductivity of US coals," Journal of Geophysical Research: Solid Earth (1978–2012), vol. 101, pp. 25381-25386, 1996.
    [13] H. Rezaei, R. Gupta, G. Bryant, J. Hart, G. Liu, C. Bailey, et al., "Thermal conductivity of coal ash and slags and models used," Fuel, vol. 79, pp. 1697-1710, 2000.
    [14] F. Wall, P. S. Martin, and G. Harbers, "High-power LED package requirements," in Optical Science and Technology, SPIE's 48th Annual Meeting, 2004, pp. 85-92.
    [15] T. L. Bergman and F. P. Incropera, Introduction to Heat Transfer: Wiley, 2011.
    [16] 中華民國國家標準, "CNS15498(發光二極體模組之熱阻量測法)," 台灣, 中華民國一百年.
    [17] 中華民國國家標準, "CNS15248(發光二極體元件之熱阻量測法)," 台灣, 中華民國九十八年.
    [18] T. Maruyama, T. Kurita, S. Kozaki, K. Andou, S. Farjami, and H. Kubo, "Innovation in producing crane rail fishplate using Fe–Mn–Si–Cr based shape memory alloy," Materials Science and Technology, vol. 24, pp. 908-912, 2008.
    [19] H. Tsai and H. Hocheng, "Prediction of a thermally induced concave ground surface of the workpiece in surface grinding," Journal of materials processing technology, vol. 122, pp. 148-159, 2002.
    [20] M. Song and R. Kovacevic, "Thermal modeling of friction stir welding in a moving coordinate system and its validation," International Journal of Machine Tools and Manufacture, vol. 43, pp. 605-615, 2003.

    QR CODE
    :::