| 研究生: |
賴翔威 Hsiang-Wei Lai |
|---|---|
| 論文名稱: |
淺部地層波速測勘方法測試與比較–以臺灣為例 |
| 指導教授: |
郭俊翔
Chun-Hsiang Kuo 林彥宇 Yen-Yu Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 地球科學學系 Department of Earth Sciences |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 183 |
| 中文關鍵詞: | 頻散曲線 、速度構造 、空間自相關法 、多頻道表面波震測 、折射震測 |
| 外文關鍵詞: | Dispersion Curve, Velocity Structure, SPAC, MASW, Seismic Reflection Method |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究嘗試使用空間自相關法(Spatial Autocorrelation Method, SPAC 法)、多頻道表面波震測法(Multichannel Analysis of Surface Waves, MASW 法)、折射震測(Seismic Refraction Method)三種方法進行分析,並與本研究團隊先前使用的頻率波數法(Frequency–Wavenumber Method, FK 法)所得的頻散曲線,以及國家地震工程研究中心(National Center for Research on Earthquake Engineering, NCREE)開放的懸盪式速度井測 (PS logging)資料進行比較。由於主動式測量(PS logging、MASW 法、折射震測)與被動式測量(SPAC 法、FK 法)之間的限制,微地動陣列與主動式 MASW 法對於深度的解析能力差距很大,某些測站的微地動陣列測深甚至超過 MASW 法的十倍。因此對使用上述兩種方法得到的頻散曲線做了測試,嘗試將頻散解析頻率接近或重疊(overlap)的頻散曲線結合,用以擴展頻散曲線的解析頻寬。在使用頻散曲線計算速度構造時需格外小心,因為在底部S波波速上升過快的情況下,可能會出現速度構造低估的問題。這是由於量測到的相速度存在上限,無法對頻散曲線做出超出此結果的解釋。對於使用 MASW 量測資料進行折射分析的成果含有較多誤差,但由於方法本身幾乎只能獲得簡單兩層的速度模型,PS logging 則是連續的速度資訊。除了折射震測的結果有較多誤差,SPAC 法與 MASW 法各自都在非極端場址條件(山腳下、高山氣象站及速度變化劇烈區域)均取得了良好結果。希望本研究能成為未來速度構造測量的參考資料。
This study analyzed three methods: the Spatial Autocorrelation Method (SPAC), the Multichannel Analysis of Surface Waves (MASW), and the Seismic Refraction Method. The results will be compared with the dispersion curves from the Frequency–Wavenumber Method (F-K Method) used in our laboratory and open PS logging data from the National Center for Research on Earthquake Engineering (NCREE). I also tested the dispersion curves obtained using SPAC and MASW methods and attempted to combine those with similar or overlapping frequencies ranges. However, caution is needed when using dispersion curves to calculate velocity structures due to the occasional underestimation. This underestimation is caused by the upper limit of the measured phase velocity, which limits our interpretation. The MASW refraction analysis results contained significant errors, mainly because the method can usually only obtain a simple two-layer model, and downhole measurements rarely start directly from the surface (at a depth of ≤ 2m), making it difficult to determine which method’s results are more accurate or to discuss potential improvements. Despite the errors in the seismic refraction results, the SPAC and MASW methods produced good results under non-extreme site conditions (such as at the foot of mountains, alpine meteorological stations, and areas with rapid velocity changes). This study aims to serve as a reference for future velocity structure assessments.
Aki, K. (1957). Space and time spectra of stationary stochastic waves with special reference to
microtremors. Bull. Erthq. Res. Inst, 35,415-456.
Aki, K. (1965). A note on the use of microseisms in determining the shallow structure of the
earth’s crust. Geophysics, 30, 665-666.
Chávez-García, F. J., Rodríguez, M., & Stephenson, W. R. (2005). An alternative approach to
the spac analysis of microtremors; exploting stationary of noise. Bull. Seismol. Soc. Am.,
95, 277-293.
Chen, C. T., Kuo, C. H., Lin, C. M., Huang, J. Y., & Wen, K. L. (2022). Investigation of shallow
s-wave velocity structure and site response parameters in taiwan by using high-density
microtremor measurements. Engineering Geology, 297, 106498.
Christian, B., M., T. A., S., S. C., A., Y., & W., U. (2014). Seismic methods in marine geology
and geophysics. Treatise on Geophysics, Second Edition, Volume 11, pp. 241-277.
Cornou, C., Ohrnberger, M., Boore, D. M., Kudo, K., & Bard, P. Y. (2006). Derivation of structural models from ambient vibration array recordings: Results from an international blind
test. Third International Symposium on the Effects of Surface Geology on Seismic Motion
Grenoble, France, 30 August - 1 September 2006. Paper Number: NBT.
Diehl, J. (2001). Geovision p-s log notes procedures.
Donohue, S., Forristal, D., & Donohue, L. (2013). Detection of soil compaction using seismic
surface waves. Soil and Tillage Research, 128, 54-60.
Flores-Estrella, H. (2004). Método spac: Una alternatva para la estimación de modelos de velocidades en el valle de méxico. Master thesis, Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México (in Spanish), 111.
Foti, S., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P. Y., Comina, C., Cornou,
C., Cox, B., Giulio, G. D., Forbriger, T., Hayashi, K., Lunedei, E., Martin, A., Mercerat,
D., Ohrnberger, M., Poggi, V., Renalier, F., Sicilia, D., & Socco, V. (2018). Guidelines
for the good practice of surface wave analysis: A product of the interpacific project.
Original Research Paper, 16, 2367–2420.
Gabriels, P., Snieder, R., & Nolet, G. (1987). In situ measurements of shear-wave velocity in
sediments with higher-mode rayleigh waves. Geophysical Prospecting, 35, 187-196.
García-Jerez, A., Flores, J. P., Sánchez-Sesma, F. J., Luzón, F., & Perton, M. (2016). A computer
code for forward calculation and inversion of the h/v spectral ratio under the diffuse field
assumption. Computers Geosciences, 2016, 97, 67–78.
Gucunski, N., & Woods, R. D. (1991). Recent advances in instrumentation, data acquisition
and testing in soil dynamics. Instrumentation for SASW testing, in Geotechnical special
publication, American Society of Civil Engineers, 29, 1-16.
Hartzell, S., Carver, D., Seiji, T., Kudo, K., & R., H. (2005). Shallow shear-wave velocity measurements in the santa clara valley; comparison of spatial autocorrelation (spac) and
frequency wavenumber (fk) methods. U.S. Geological Survey Open-File Report, 2005-
1169.
Horike, M. (1985). Inversion of phase velocity of long-period microtremors to the s-wavevelocity structure down to the basement in urbanized areas. J Phys Earth 1985;33:59–
96.
Kuo, C. H., Chen, C. T., Lin, C. M., Wen, K. L., Huang, J. Y., & Chang, S. C. (2016). Swave velocity structure and site effect parameters derived from microtremor arrays in
the western plain of taiwan. Journal of Asian Earth Sciences 128 (2016) 27–41.
Kuo, C. H., Cheng, D. S., Hsieh, H. H., Chang, T. M., Chiang, H. J., Lin, C. M., & Wen, K. L.
(2009). Comparison of three different methods in investigating shallow shear-wave velocity structures in ilan, taiwan. Soil Dynamics and Earthquake Engineering, 29 (2009),
133–143.
Kuo, C. H., Wen, K. L., Hsieh, H. H., Lin, C. M., Chang, T. M., & Kuo, K. (2012). Site classification and vs30 estimation of free-field tsmip stations using the logging data of egdt.
Engineering Geology, 129–130, 2012, 68–75.
Mokhtar, T. A., Herrmann, R. B., & Russel, D. R. (1988). Seismic velocity and q model for the
shallow structure of the arabian shield from short-period rayleigh waves. Geophysics,
53, 1379-1387.
Morikawa, H., Sawada, S., & Akamatsu, J. (2004). A method to estimate phase velocities of
rayleigh waves using microseisms simultaneously observed at two sites. Bull. Seismol.
Soc. Am., 94, 961-976.
Morikawa, H., Toki, K., Sawada, S., Akamtsu, J., Miyacoshi, K., Ejiri, J., & Nakayima, D.
(1998). Detection of dispersión curves from microseisms obserbed at two sities. The
effects of Surface Geology on Seismic Motion, Irikura, Kudo, Okada and Sasatani (eds.),
Balkema, Rotterdam, The Netherlans, 719-724.
Mosegaard, K., & Tarantola, A. (1995). Monte carlo sampling of solutions to inverse problems.
J. Geophys. Res. 100B7, 12431–12447.
Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. Comput. J. 7,
308–313.
Park, C. B., Miller, R. M., & Xia, J. (1996). Multi-channel analysis of surface waves using
vibroseis. 66th Ann. Mtg. of SEG, Denver, Expanded Abstracts, 68-71.
Park, C. B., Miller, R. M., & Xia, J. (1997). Multi-channel analysis of surface waves (masw)
a summary report of technical aspects, experimental results, and perspective. Kansas
Geological Survey Open-file Report, 97(10).
Park, C. B., Miller, R. M., & Xia, J. (1998). Imaging dispersion curves of surface waves on
multi-channel record. SEG Technical Program Expanded Abstracts, 1377-1380.
Park, C. B., Miller, R. M., & Xia, J. (1999). Multichannel analysis of surface waves. Geophysics,
64, 3, 800-808.
Satoh, T., Kawase, H., Iwata, T., Higashi, S., Sato, T., Irikura, K., & Huang, H. C. (2001). Swave velocity structure of the taichung basin, taiwan, estimated from array and singlestation records of microtremors. Bulletin of the Seismological Society of America, 91(5),
1267–1282.
Stokoe, K. H., Wright, G. W., James, A. B., & Jose, M. R. (1994). Characterization of geotechnical sites by sasw method, in geophysical characterization of sites. ISSMFE Technical
Committee 10, edited by R. D. Woods, Oxford Publishers, New Delhi.
Teng, L. S., Lee, C. T., Peng, C. H., Chu, J. J., & Chen, W. (2001). Origin and geological
evolution of the taipei basin, northern taiwan. Western Pacific Earth Sciences, vol. 1,
115-142.
Tokimatsu, K., Tamura, S., & Kojima, H. (1992). Effects of multiple modes on rayleigh wave
dispersion characteristics. Journal of Geotechnical Engineering, American Society of
Civil Engineering, 118, 10, 1529-1543.
Wen, K. L., Lin, C. M., Chiang, H. J., Kuo, C. H., Huang, Y. C., & Pu, H. C. (2008). Effect
of surface geology on ground motions: The case of station tap056 - chutzuhu site. Terr.
Atmos. Ocean. Sci., 19, 5, 451-462.
Yamada, M., Cho, I., Kuo, C. H., Lin, C. M., Miyakoshi, K., Guo, Y., Hayashida, T., Matsumoto,
Y., Mori, J., Yen, Y. T., & Kuo, K. C. (2020). Shallow subsurface structure in the hualien
basin and relevance to the damage pattern and fault rupture during the 2018 hualien
earthquake. Bulletin of the Seismological Society of America 2020, 110 (6), 2939-2952.
Yokoi, T. (2014). Instruction: Analysis of spac method. IISEE, BRI, Japan, Aug. 14, 2014.
林彥宇與郭俊翔. (2023). 米崙斷層鑽井計畫-跨米崙斷層帶地震監測系統。 土木水利,
第五十卷(第二期),34-37。
黃信樺與馬國鳳. (2022). 地震學的光世代與花蓮米崙斷層深鑽計畫。 物理雙月刊,物理
專文,2022-02-16。