跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭瀚文
Han-wun Guo
論文名稱: 路徑圖與格子圖上的目標集問題
Target Set Selection Problem on Paths and Grids
指導教授: 葉鴻國
Hong-Gwa Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 22
中文關鍵詞: 路徑圖格子圖目標集問題
外文關鍵詞: grids, Target set
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要在處理路徑圖 (Path) 上的 Target set Selection Problem (TSS Problem),另外對 Pn□Pm 圖上也得到一些結果。我們在 TSS Problem 上考慮兩類感染方式:並行感染規則 I 與並行感染規則 II。
    在並行感染規則 I 下,將已有的 Theorem 1 至 Theorem 3 ([3], [6]) 從 Pn□Pn 推廣到 Pn□Pm,並給出不等式等號成立的充分條件。在並行感染規則 II 下,討論並行感染規則 II 的性質 (遞增性,圖形與子圖的關係),在圖形為 path 時,討論 min-seed 在子圖中的下界,對於在 path 上一般性的情形,其中 a_i≥2 的情形可以得到結果,一般性的情形 a_i≥0 還沒有解決,但可以推論出問題的關鍵在於〖 a〗_i≥1 的情形。


    In this paper, we are focus on the Target set Selection Problem (TSS Problem) on path. We also get some results on Pn□Pm. Consider two different rules of Bootstrap Percolation:
    Rule I and Rule II
    Under Rule I, we generalize Theorem 1, Theorem 2 and Theorem 3 ([3], [6]) from Pn□Pn
    to Pn□Pm.. Furthermore, we give some sufficient conditions for inequality such that equality holds. On the other hand, we have some properties under Rule II and results on path.

    1 Introduction 1 2 Examples for TSS Problem 3 3 TSS Problem on Path 10 References 16

    [1] E. Ackerman, O. Ben-Zwi, and G. Wolfovitz, Combinatorial model and bounds for
    target set selection, Theoret. Comput. Sci., 411(2010), pp. 4017-4022.
    [2] S. S. Adams, D. S. Troxell, and S. L. Zinnen, Dynamic monopolies and feedback
    vertex sets in hexagonal grids, Comput. and Math. Appl., 62(2011), pp. 4049-4057.
    [3] Béla Bollobàs, The Art of Mathematics Coffee Time in Memphis, Cambridge University Pressm, 2006, pp. 171-172.
    [4] E. Berger, Dynamic monopolies of constant size, J. Combin. Theory Ser. B, 83(2001),
    pp. 191-200.
    [5] O. Ben-Zwi, D. Hermelin, D. Lokshtanov, and I. Newman, Treewidth governs the
    complexity of target set selection, Discrete Optim., 8(2011), pp. 87-96.
    [6] J. Balogh and G. Pete, in Proceedings of the Eighth International Conference 'Random
    Structures and Algorithms' (Poznan, 1997), Random Structures Algorithms, 13(1998) pp. 409-422.
    [7] N. Chen, On the approximability of influence in social networks, SIAM J. Discrete
    Math., 23(2009), pp. 1400-1415.
    [8] C. -Y. Chaing, L. -H. Huang, B. -J. Li, J. Wu, and H. -G. Yeh, Some Results on the
    Target Set Selection Problem, J. Comb. Optim., to appear.
    [9] P. A. Dreyer and F. S. Roberts, Irreversible k-threshold processes: Graph-theoretical
    threshold models of the spread of disease and of opinion, Discrete Applied Math.,
    157(2009), pp. 1615-1627.
    [10] P. Flocchini, F. Geurts, and N. Santoro, Optimal irreversible dynamos in chordal rings, Discrete Appl. Math., 113(2001), pp. 23-42.
    [11] P. Flocchini, R. Královič, P. Ružička, A. Roncato, and N. Santoro, On time versus
    size for monotone dynamic monopolies in regular topologies, J. Discrete Algorithms,
    1(2003), pp. 129-150.
    [12] P. Flocchini, E. Lodi, F. Luccio, L. Pagli, and N. Santoro, Dynamic monopolies in tori, Discrete Appl. Math., 137(2004), pp. 197-212.
    [13] P. Flocchini, Contamination and Decontamination in Majority-Based Systems, J. Cell.
    Autom., 4(2009), pp. 183-200.
    [14] D. Kempe, J. Kleinberg, and E. Tardos, Maximizing the spread of influence through
    a social network, in Proceedings of the 9th ACM SIGKDD International Conference
    on Knowledge Discovery and Data Mining, 2003, pp. 137-146.
    [15] D. Kempe, J. Kleinberg, and E. Tardos, Influential nodes in a diffusion model for
    social networks, in Proceedings of the 32th International Colloquium on Automata,
    Languages and Programming, 2005, pp. 1127-1138.
    [16] F. Luccio, Almost exact minimum feedback vertex set in meshes and butterflies, Inform. Process. Lett., 66(1998), pp. 59-64.
    [17] F. Luccio, L. Pagle, and H. Sanossian, Irreversible dynamos in butterflies, in proceedings of the 6th International Colloquium on Structural Information and Communication Complexity (SIROCCO), 1999, pp. 204-218.
    [18] D. Peleg, Size bounds for dynamic monopolies, Discrete Appl. Math., 86(1998) pp.
    263-273.
    [19] D. Peleg, Local majorities, coalitions and monopokies in graphs: A review, Theoret.
    Comput. Science, 282(2002) pp. 231-257.
    [20] D. A. Pike and Y. Zou, Decycling Cartesian products of two cycles, SIAM J. Discrete
    Math., 19(2005) pp. 651-663.
    [21] M. Zaker, On dynamic monopolies of graphs with general thresholds, Discrete Math.,
    312(2012) pp. 1136-1143.

    QR CODE
    :::