| 研究生: |
郭瀚文 Han-wun Guo |
|---|---|
| 論文名稱: |
路徑圖與格子圖上的目標集問題 Target Set Selection Problem on Paths and Grids |
| 指導教授: |
葉鴻國
Hong-Gwa Yeh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 22 |
| 中文關鍵詞: | 路徑圖 、格子圖 、目標集問題 |
| 外文關鍵詞: | grids, Target set |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要在處理路徑圖 (Path) 上的 Target set Selection Problem (TSS Problem),另外對 Pn□Pm 圖上也得到一些結果。我們在 TSS Problem 上考慮兩類感染方式:並行感染規則 I 與並行感染規則 II。
在並行感染規則 I 下,將已有的 Theorem 1 至 Theorem 3 ([3], [6]) 從 Pn□Pn 推廣到 Pn□Pm,並給出不等式等號成立的充分條件。在並行感染規則 II 下,討論並行感染規則 II 的性質 (遞增性,圖形與子圖的關係),在圖形為 path 時,討論 min-seed 在子圖中的下界,對於在 path 上一般性的情形,其中 a_i≥2 的情形可以得到結果,一般性的情形 a_i≥0 還沒有解決,但可以推論出問題的關鍵在於〖 a〗_i≥1 的情形。
In this paper, we are focus on the Target set Selection Problem (TSS Problem) on path. We also get some results on Pn□Pm. Consider two different rules of Bootstrap Percolation:
Rule I and Rule II
Under Rule I, we generalize Theorem 1, Theorem 2 and Theorem 3 ([3], [6]) from Pn□Pn
to Pn□Pm.. Furthermore, we give some sufficient conditions for inequality such that equality holds. On the other hand, we have some properties under Rule II and results on path.
[1] E. Ackerman, O. Ben-Zwi, and G. Wolfovitz, Combinatorial model and bounds for
target set selection, Theoret. Comput. Sci., 411(2010), pp. 4017-4022.
[2] S. S. Adams, D. S. Troxell, and S. L. Zinnen, Dynamic monopolies and feedback
vertex sets in hexagonal grids, Comput. and Math. Appl., 62(2011), pp. 4049-4057.
[3] Béla Bollobàs, The Art of Mathematics Coffee Time in Memphis, Cambridge University Pressm, 2006, pp. 171-172.
[4] E. Berger, Dynamic monopolies of constant size, J. Combin. Theory Ser. B, 83(2001),
pp. 191-200.
[5] O. Ben-Zwi, D. Hermelin, D. Lokshtanov, and I. Newman, Treewidth governs the
complexity of target set selection, Discrete Optim., 8(2011), pp. 87-96.
[6] J. Balogh and G. Pete, in Proceedings of the Eighth International Conference 'Random
Structures and Algorithms' (Poznan, 1997), Random Structures Algorithms, 13(1998) pp. 409-422.
[7] N. Chen, On the approximability of influence in social networks, SIAM J. Discrete
Math., 23(2009), pp. 1400-1415.
[8] C. -Y. Chaing, L. -H. Huang, B. -J. Li, J. Wu, and H. -G. Yeh, Some Results on the
Target Set Selection Problem, J. Comb. Optim., to appear.
[9] P. A. Dreyer and F. S. Roberts, Irreversible k-threshold processes: Graph-theoretical
threshold models of the spread of disease and of opinion, Discrete Applied Math.,
157(2009), pp. 1615-1627.
[10] P. Flocchini, F. Geurts, and N. Santoro, Optimal irreversible dynamos in chordal rings, Discrete Appl. Math., 113(2001), pp. 23-42.
[11] P. Flocchini, R. Královič, P. Ružička, A. Roncato, and N. Santoro, On time versus
size for monotone dynamic monopolies in regular topologies, J. Discrete Algorithms,
1(2003), pp. 129-150.
[12] P. Flocchini, E. Lodi, F. Luccio, L. Pagli, and N. Santoro, Dynamic monopolies in tori, Discrete Appl. Math., 137(2004), pp. 197-212.
[13] P. Flocchini, Contamination and Decontamination in Majority-Based Systems, J. Cell.
Autom., 4(2009), pp. 183-200.
[14] D. Kempe, J. Kleinberg, and E. Tardos, Maximizing the spread of influence through
a social network, in Proceedings of the 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2003, pp. 137-146.
[15] D. Kempe, J. Kleinberg, and E. Tardos, Influential nodes in a diffusion model for
social networks, in Proceedings of the 32th International Colloquium on Automata,
Languages and Programming, 2005, pp. 1127-1138.
[16] F. Luccio, Almost exact minimum feedback vertex set in meshes and butterflies, Inform. Process. Lett., 66(1998), pp. 59-64.
[17] F. Luccio, L. Pagle, and H. Sanossian, Irreversible dynamos in butterflies, in proceedings of the 6th International Colloquium on Structural Information and Communication Complexity (SIROCCO), 1999, pp. 204-218.
[18] D. Peleg, Size bounds for dynamic monopolies, Discrete Appl. Math., 86(1998) pp.
263-273.
[19] D. Peleg, Local majorities, coalitions and monopokies in graphs: A review, Theoret.
Comput. Science, 282(2002) pp. 231-257.
[20] D. A. Pike and Y. Zou, Decycling Cartesian products of two cycles, SIAM J. Discrete
Math., 19(2005) pp. 651-663.
[21] M. Zaker, On dynamic monopolies of graphs with general thresholds, Discrete Math.,
312(2012) pp. 1136-1143.