跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄧敦建
Tun-Chien Teng
論文名稱: 體積全像於光學元件及光儲存之研究
The study of volume holography on optical elements and optical data storage
指導教授: 孫慶成
Ching-Cherng Sun
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 95
語文別: 中文
論文頁數: 102
中文關鍵詞: 體積全像光儲存光學元件
外文關鍵詞: VHOE, holographic storage, volume holography
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對體積全像在光學元件與光儲存兩方面的應用做研究。在光學元件的應用研究上提出了一維線性成像、非典型二維延伸範圍成像之體積全像光學元件以及三維物體轉動感測之體積全像光學元件;在光儲存應用研究上則提出了畫素位移補償的概念以降低位元錯誤率,以及使用空間濾波器以增加碟片徑向位移靈敏度的方法。論文中詳述相關的理論推導並附上實驗結果以佐證理論的正確性,相關的研究成果可以做為未來在上述領域中更進一步研究的基礎。


    In this thesis, the topics on volume holography applied to both optical elements and optical storage are discussed. In the first topic, we propose and demonstrate a volume-holographic one-dimensional linear imaging optical element, atypical two-dimensional imaging and a volume holographic optical element for sensing rotation of a 3-D object. In the second topic, we propose and demonstrate a geometrical arrangement for free of pixel-misregistration during readout process with the rotation of disc to reduce the bit-error rate. Besides, we propose a one-dimensional spatial filter to increase radial selectivity in volume holographic optical discs.

    第一章 緒論 1 1-1全像光學的發展 1 1-2論文大綱 2 第二章 體積全像相關理論 4 2-1簡述全像術 4 2-2 光折變效應 6 2-3 布拉格條件 10 2-4 耦合理論 13 2-4-1布拉格匹配 17 2-4-2 布拉格不匹配 19 2-5波恩近似法 22 2-6相位疊加法 26 第三章 體積全相光學元件之一維線性成像 30 3-1 布拉格簡併 30 3-2 理論分析 32 3-3 實驗 35 3-4 結論 38 第四章 體積全像在二維成像上的應用 39 4-1理論分析 39 4-2多重光柵的設計 43 4-3結論 47 第五章 體積全像空間濾波器應用於3D物體轉動方 位之量測 48 5-1理論分析 48 5-1-1毛玻璃球繞z軸轉動 52 5-1-2毛玻璃球分別繞x與y軸轉動 54 5-1-3 模擬結果討論 55 5-2實驗 56 5-3結論 58 第六章 體積全像在光儲存上的應用 59 6-1 系統架構 59 6-2理論分析 61 6-2-1 繞射光點位移補償效應 63 6-2-2 空間調制器的理論模型 66 6-2-3系統位元錯誤率之分析 67 6-2-4 單頁串音效應 69 6-2-5 多頁串音效應 77 6-2-6 結論 82 6-3降低體積全像碟片之徑向串音以增加多工容量 82 6-3-1理論分析 82 6-3-2實驗 86 6-3-4結論 88 第七章 總結 89

    [1] D. Gabor, “A new Microscopic principle” Nature 161, 777 (1948).
    [2] H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Spring-Verlag Berlin Heidelberg 2000).
    [3] H. A. Eggert, F. Kalkum, K. Buse, and B. Sturman, "Bragg selectivity of space-charge gratings in multidomain lithium niobate crystals," Opt. Lett. 31, 1256 (2006).
    [4] H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage, (Springer, New York, 2000).
    [5] J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM journal of research and development, 44, 341 (2000).
    [6] for example, C. C. Sun and P. P. Banerjee, “ Special Section Guest Editorial : Volume Holographic Optical Elements,” Opt. Eng. 43, 1957 (2004).
    [7] for example, G. Barbastathis and D. Psaltis, Volume Holographic Multiplexing Methods, in H. J. Coufal, D. Psaltis and G. T. Sincerbox, eds, Holographic Data Storage, Springer, 2000.
    [8] E. N. Leith, A. Kozma, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303 (1966).
    [9] G.W. Burr, F. H. Mok, and D. Psaltis, “Angle and space multiplexed storage using the 90ogeometry,” Opt. Commun. 117, 49 (1995).
    [10] K. Curtis, A. Pu, and D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993 (1994).
    [11] Pu and D. Psaltis, “High density recording in photopolymer-based holographic 3-D disks,” Appl. Opt. 35, 2389 (1996).
    [12] G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403 (1996).
    [13] G.A. Rakuljic, V. Levya, and Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471 (1992).
    [14] S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F. T. S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser,” Opt. Commun. 101, 317 (1993).
    [15] C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171 (1991).
    [16] J. T. LaMacchia and D. L. White, " Coded multiple exposure holograms," Appl. Opt. 7, 91 (1968).
    [17] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “ Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012 (1995).
    [18] C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang and M. W. Chang, “ Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass," Opt. Quantum Electron. 28, 1509 (1996).
    [19] C. C. Sun and W. C. Su” Three-dimensional shifting selectivity of random phase encoding in volume holograms," Applied Optics 40, 1253 (2001).
    [20] S. Yin, P. Purwosumarto, and F. T. S. Yu, “Application of fiber specklegram sensor to fine angular alignment,” Opt. Commun. 170, 15 (1999).
    [21] G. A. Rakuljic, V. Levya, and Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471 (1992).
    [22] S. F. Chen, C. S. Wu, and C. C. Sun, “Design for a High Dense Wavelength Division Multiplexer Based on Volume Holographic Gratings,“ Opt. Eng. 43, 2028 (2004).
    [23] F. Havermeyer, W. Liu, C. Moser, D. Psaltis and G. J. Steckman, “Volume holographic grating-based continuously tunable optical filter,” Opt. Eng. 43, 2017 (2004).
    [24] G. Barbastathis, M. Balberg and D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811 (1999).
    [25] Sinha, G. Barbastathis, W. Liu, and D. Psaltis, “Imaging using volume holograms,” Opt. Eng. 43, 1957 (2004).
    [26] W. Liu, G. Barbastathis, and D. Psaltis, “Volume holographic hyperspectral imaging,” Appl. Opt. 43, 3581 (2004).
    [27] C. C. Sun, T. C. Teng and Y. W. Yu, “One-dimensional Optical Imaging with Volume Holographic Optical Element,” Opt. Lett. 30, 1132 (2005).
    [28] C. C. Sun, Y. M. Chen, and W. C. Su, “An all-optical fiber sensing system based on random phase encoding and volume holographic interconnection,” Opt. Eng. 40, 160 (2001).
    [29] C. C. Sun, Y. Ouyang, W. C. Su, and E. T. Chiou, “All-optical angular sensing based on holography multiplexing with spherical waves,” Opt. Eng. 41, 2809 (2002).
    [30] B. Wang, J. Y. Chang, W. C. Su, and C. C. Sun, “Optical security using a random binary phase code in volume holograms,” Opt. Eng. 43, 2048 (2004).
    [31] T. C. Teng, P. C. Ou, and C. C. Sun, “Volume holographic Optical Elements for Point-to-point Self-focusing with Local Crosstalk,” Opt. Lett. 30, 3015 (2005).
    [32] C. C. Sun, C. Y. Hsu, W. C. Su, Y. Ouyang, and J. Y. Chang, “A novel algorithm for high sensitivity in measuring surface variation based on volume holography,” Micro. Opt. Tech. Lett. 34, 319 (2002).
    [33] Y. Jeong and B. Lee, "Effect of a random pattern through a multimode-fiber bundle on angular and spatial selectivity in volume holograms: experiments and theory," Appl. Opt. 41, 4085 (2002).
    [34] S. H. Shin and B. Javidi, “Three-dimensional object recognition by use of a photorefractive processor,” Opt. Lett. 26, 1161 (2001).
    [35] B. Javidi and E. Tajahuerce, “Three-dimensinal object recognition by use of digital holography,” Opt. Eng. 25, 610 (2000).
    [36] C. C. Sun, C. Y. Hsu, C. H. Wu, and W. C. Su, “Spatial filtering of three-dimensional objects based on volume holography,” Opt. Eng. 42, 2788 (2003).
    [37] E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, "Holographic data storage in three-dimensional media", Appl. Opt. 5, 1303 (1966).
    [38] C. C. Sun and W. C. Su, "Three-Dimensional Shifting Selectivity of Random Phase Encoding in Volume Holograms ," Appl. Opt. 40, 1253 (2001).
    [39] P. J. van Heerden, “Theory of Optical Information Storage in Solids,” Appl. Opt. 2, 393 (1963).
    [40] Pochi Yeh, Introduction to Photorefractive Nonlinear Optics, John Wiley& Sons, Inc. (1993).
    [41] 余業緯,應用體積全像光學元件之布拉格窗於點對點成像之研究,國立中央大學光電所碩士論文,中華民國九十四年。
    [42] 歐博濟,新奇全像反射鏡之研究,,國立中央大學光電所碩士論文,中華民國九十四年。
    [43] 鍾文杰,體積全像空間濾波器應用於3D物體旋轉方位之量測,中華民國九十四年。
    [44] 葉世博,高位移敏感度之全像多工光學儲存之研究,國立中央大學光電所碩士論文,中華民國八十九年。
    [45] 林祐年,體積光柵應用於微物3D掃描之研究,國立中央大學光電所碩士論文,中華民國八十九年。
    [46] 吳其昱,球面波位移多工之全像光碟讀取機構之研究,中華民國九十五年。
    [47] T. C. Teng, W. J. Zhong, S. H. Ma and C. C. Sun, “Volume Holographic Filters for Rotational Sensing of 3D Objects,” Appl. Opt., accepted.
    [48] J. Heanue, M. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science, 265, 749 (1994).
    [49] F. H. Mok, M. C. Tackitt, and H. M. Stoll, Opt. Lett. 16, 605 (1991).
    [50] K. Curtis, A. Pu, and D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993 (1994).
    [51] G. A. Rakuljic, V. Levya, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471 (1992).
    [52] C. C. Sun, W. C. Su, B. Wang, and Y. Ouyang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67 (2000).
    [53] Y. Lee and S. Sohn, "Optical implementation of orthogonal phase-code multiplexing," Opt. Lett. 26, 1990 (2001).
    [54] W. C. Su, Y. W. Chen, C. C. Sun, and Y. Ouyang, “Multi-layer storage of a shift-multiplexed holographic disc,” Opt. Eng. 42, 1528 (2003).
    [55] L. Hesselink, Optical Architectures, in H. J. Coufal, D. Psaltis and G. T. Sincerbox, eds, Holographic Data Storage, Springer Optical Science, 2000.
    [56] K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29, 1402 (2004)
    [57] E. Chuang, K. Cirtis, Y. Yang, and A. Hill, “Consumer holographic read-only memory reader with mastering and replication technology,” Opt. Lett. 31, 1050 (2006)
    [58] M. Ayres, A. Hoskins, and K. Curtis “Image oversampling for page-oriented optical data storage,” Appl. Opt. 45, 2459 (2006)
    [59] G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403 (1996).
    [60] H. Y. S. Li, and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764 (1994).
    [61] H. Horimai, and J. Li, “A Novel Collinear Optical Setup for Holographic Data storage”, in Optical Data Storage 2004, B. V. K., Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380, 297 (2004).
    [62] H. Horimai, X. Tan, and J. Li, “Collinear Holography,” Appl. Opt., 44, No. 13, 2575 (2005).
    [63] H. Horimai, and X. Tan, “Collinear technology for a holographic versatile disk,” Appl. Opt., 45, No. 5, 910 (2006).
    [64] T. Shimura, S. Ichimura, R. Fujimura, K, Kuroda, X. Tan and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett., 31, No. 9, 1208 (2006).
    [65] S. Nishiwaki, "Bit error analysis for optical disks," Appl. Opt. 29, 644 (1990).
    [66] G. P. Nordin and P. Asthana, "Effects of cross talk on fidelity in page-oriented volume holographic optical data storage," Opt. Lett. 18, 1553 (1993).
    [67] C. Gu, G. Sornat, and J. Hong, "Bit-error rate and statistics of complex amplitude noise in holographic data storage," Opt. Lett. 21, 1070 (1996).
    [68] C. C. Sun and W. C. Su, "Three-Dimensional Shifting Selectivity of Random Phase Encoding in Volume Holograms, "Appl. Opt. 40, 1253 (2001).
    [69] C. Gu, J. Hong, I. McMichael, and R. Saxena, “Cross-talk-limited storage capacity of volume holographic memory,” J. Opt. Soc. Am. A 9, 1978 (1992).
    [70] X. Yi, S. Campbell, P. Yeh, and C. Gu, "Statistical analysis of cross-talk noise and storage capacity in volume holographic memory: image plane holograms," Opt. Lett. 20, 779 (1995).
    [71] M-P. Bernal, G. W. Burr, H. Coufal, and M. Quintanilla, ”Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems,” Appl. Opt. 37, 5377 (1998).
    [72] T. C. Teng, Y. W. Yu and C. C. Sun, “Enlarging multiplexing capacity with reduced radial cross talk in volume holographic discs,” Optics Express 14, 3187 (2006).

    QR CODE
    :::