| 研究生: |
粘竺民 ZHU-MIN NIAN |
|---|---|
| 論文名稱: |
氣膠沉積法製備LSMO保護層於Fe-Cr合金之高溫特性研究 Characterization of LSMO Protective Layer Coated on Fe-Cr Alloy by Aerosol Deposition Method |
| 指導教授: | 李雄 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 金屬連接板 、陰極毒化 、氧化層 、氣膠沉積法 |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬連接板在固態氧化物燃料電池 (Solid Oxide Fuel Cell, SOFC)中之功用為單電池電的傳導、與隔絕陰陽兩極氣氛。由於SOFC操作溫度降低至600 ~ 800℃,使得肥粒鐵系 (Ferritic Stainless Steel) Fe-Cr合金之金屬連接板材料可應用在SOFC中。然而金屬連接板材料長時間於SOFC操作環境下,其表面會生成過厚的氧化層及Cr向外揮發造成陰極毒化。這些現象均會降低SOFC電池堆整體的輸出效能。
為了有效抑制氧化層生成及鉻向外揮發,最直接方法為於連接板材料表面上披覆保護層。此舉不僅可減緩氧化層成長速率,更能有效阻礙Cr向外揮發。在本研究中,我們選擇La0.67Sr0.33MnO3 (LSMO)鈣鈦礦材料當作保護層材料,利用氣膠沉積法來製備保護層,並與網版印刷法製備之保護層比較其面積比電阻、高溫抗氧化性及抑止鉻揮發的效果。SEM結果顯示,高緻密與厚度均勻之LSMO保護層已成功利用氣膠沉積法批覆在材料表面上。經800℃高溫氧化750小時後,氣膠沉積法製備之保護層連接板在高溫抗氧化性、面積比電阻及阻礙鉻揮發性均優於網版印刷法製備之保護層材料。
In recent years, solid oxide fuel cell working temperature was down to 600℃ to 800℃, thus ferritic stainless steel was used as interconnect in Solid Oxide Fuel Cell (SOFC). The functions of interconnect are electrical conduction and separated air and fuel in cathode and anode, respectively. However, long term in SOFC operating atmosphere, the oxidation and Cr poisoning are nonetheless formidable to cause the failure of interconnects.
The protective layer coating on the materials surface was effective way to barrier Cr outward diffusion and excess oxide layer formed on the surface of interconnect materials. In this study, La0.67Sr0.33MnO3 (LSMO) perovskite structure was choosing as protective layer to coating on SS441 surface by aerosol deposition method and screen printing, respectively. SEM results show that high density and uniform thickness LSMO protective layer was success coated on SS441 surface by aerosol deposition method. After 750 hours oxidation at 800℃, the ASR, oxidation resistance and Cr evaporation of coating materials by aerosol deposition method was better than coated by screen printing.
[1] 本間琢也, 圖解燃料電池百科, 全華科技圖書, 2004.
[2] 黃鎮江, 燃料電池, 滄海書局, 2008.
[3] 呂駿嶸, "固態氧化物燃料電池金屬雙極板之高溫氧化及電性研究", 國立台灣科技大學 機械工程系 碩士論文, (民國九十五年)
[4] Z. Yang, G. Xia, P. Singh, J.W. Stevenson, "Electrical contacts between cathodes and metallic interconnects in solid oxide fuel cells", J. Power Sources, Vol. 155 (2006) pp. 246-252.
[5] Y.D. Zhen, S.P. Jiang, S. Zhang, V. Tan, "Interaction between metallic interconnect and constituent oxides of (La, Sr)MnO3 coating of solid oxide fuel cells", J. Eur. Ceram. Soc., Vol. 26 (2006) pp. 3253-3264.
[6] E. Konysheva, U. Seeling, A. Besmehn, L. Singheiser, K. Hilpert, "Chromium vaporization of the ferritic steel Crofer22APU and ODS Cr5Fe1Y alloy", J. Mater. Sci., Vol. 42 (2007) pp. 5778-5784.
[7] J. Wu, X. Liu, "Recent Development of SOFC Metallic Interconnect", J. Mater. Sci. Technol., Vol. 26 (2010) pp. 293-305.
[8] S.J. Geng, J.H. Zhu, Z.G. Lu, "Evaluation of Haynes 242 alloy as SOFC interconnect material", Solid State Ionics, Vol. 177 (2006) pp. 559-568.
[9] R. Bredesen, P. Kofstad, Proceeding of second European solid oxide fuel cell forum, Vol. 2 (1996) pp. 567.
[10] 黃濬緯, "金屬連接板氧化行為及表面塗層改善研究", 國立中央大學 機械工程系 碩士論文, (民國九十九年)
[11] F. Jeffrey W, "Metallic interconnects for solid oxide fuel cells", Materials Science and Engineering: A, Vol. 397 (2005) pp. 271-283.
[12] Z. Yang, G.G. Xia, X.H. Li, J.W. Stevenson, "(Mn,Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications", Int. J. Hydrogen Energy, Vol. 32 (2007) pp. 3648-3654.
[13] J. Wu, X. Liu, "Recent Development of SOFC Metallic Interconnect", Journal of Materials Science & Technology, Vol. 26 (2010) pp. 293-305.
[14] M. Wang, K.D. Woo, C.G. Lee, "Preparing La0.8Sr0.2MnO3 conductive perovskite via optimal processes: High-energy ball milling and calcinations", Energy Convers. Manage., Vol. 52 (2011) pp. 1589-1592.
[15] S.S. Pyo, S.B. Lee, T.H. Lim, R.H. Song, D.R. Shin, S.H. Hyun, Y.S. Yoo, "Characteristic of (La0.8Sr0.2)0.98MnO3 coating on Crofer22APU used as metallic interconnects for solid oxide fuel cell", Int. J. Hydrogen Energy, Vol. 36 (2011) pp. 1868-1881.
[16] C.J. Fu, K.N. Sun, X.B. Chen, N.Q. Zhang, D.R. Zhou, "Electrochemical properties of A-site deficient SOFC cathodes under Cr poisoning conditions", Electrochim. Acta, Vol. 54 (2009) pp. 7305-7312.
[17] W.Z. Zhu, S.C. Deevi, "Development of interconnect materials for solid oxide fuel cells", Mater. Sci. Eng., A, Vol. 348 (2003) pp. 227-243.
[18] G.Y. Lau, M.C. Tucker, C.P. Jacobson, S.J. Visco, S.H. Gleixner, L.C. DeJonghe, "Chromium transport by solid state diffusion on solid oxide fuel cell cathode", J. Power Sources, Vol. 195 (2010) pp. 7540-7547.
[19] S. Geng, J. Zhu, M.P. Brady, H.U. Anderson, X.D. Zhou, Z. Yang, "A low-Cr metallic interconnect for intermediate-temperature solid oxide fuel cells", J. Power Sources, Vol. 172 (2007) pp. 775-781.
[20] Z. Lu, J. Zhu, E. Andrew Payzant, M.P. Paranthaman, "Electrical Conductivity of the Manganese Chromite Spinel Solid Solution", J. Am. Ceram. Soc., Vol. 88 (2005) pp. 1050-1053.
[21] P. Jian, L. Jian, H. Bing, G. Xie, "Oxidation kinetics and phase evolution of a Fe-16Cr alloy in simulated SOFC cathode atmosphere", J. Power Sources, Vol. 158 (2006) pp. 354-360.
[22] T. Horita, K. Yamaji, Y. Xiong, H. Kishimoto, N. Sakai, H. Yokokawa, "Oxide scale formation of Fe-Cr alloys and oxygen diffusion in the scale", Solid State Ionics, Vol. 175 (2004) pp. 157-163.
[23] T. Horita, K. Yamaji, H. Yokokawa, A. Toji, T. Uehara, K. Ogasawara, H. Kameda, Y. Matsuzaki, S. Yamashita, "Effects of Si and Al concentrations in Fe-Cr alloy on the formation of oxide scales in H2-H2O", Int. J. Hydrogen Energy, Vol. 33 (2008) pp. 6308-6315.
[24] H.S. Seo, G. Jin, J.H. Jun, D.H. Kim, K.Y. Kim, "Effect of reactive elements on oxidation behaviour of Fe-22Cr-0.5Mn ferritic stainless steel for a solid oxide fuel cell interconnect", J. Power Sources, Vol. 178 (2008) pp. 1-8.
[25] T. Horita, H. Kishimoto, K. Yamaji, Y. Xiong, N. Sakai, M.E. Brito, H. Yokokawa, "Evaluation of Laves-phase forming Fe-Cr alloy for SOFC interconnects in reducing atmosphere", J. Power Sources, Vol. 176 (2008) pp. 54-61.
[26] W.Z. Zhu, S.C. Deevi, "Opportunity of metallic interconnects for solid oxide fuel cells: a status on contact resistance", Mater. Res. Bull., Vol. 38 (2003) pp. 957-972.
[27] Z. Yang, G.G. Xia, G.D. Maupin, J.W. Stevenson, "Conductive protection layers on oxidation resistant alloys for SOFC interconnect applications", Surf. Coat. Technol., Vol. 201 (2006) pp. 4476-4483.
[28] S. Lee, C.-L. Chu, M.-J. Tsai, J. Lee, "High temperature oxidation behavior of interconnect coated with LSCF and LSM for solid oxide fuel cell by screen printing", Appl. Surf. Sci., Vol. 256 (2010) pp. 1817-1824.
[29] T. Brylewski, M. Nanko, T. Maruyama, K. Przybylski, "Application of Fe-16Cr ferritic alloy to interconnector for a solid oxide fuel cell", Solid State Ionics, Vol. 143 (2001) pp. 131-150.
[30] J.H. Kim, R.H. Song, S.H. Hyun, "Effect of slurry-coated LaSrMnO3 on the electrical property of Fe-Cr alloy for metallic interconnect of SOFC", Solid State Ionics, Vol. 174 (2004) pp. 185-191.
[31] M. Burriel, G. Garcia, J. Santiso, A.N. Hansson, S. Linderoth, A. Figueras, "Co3O4 protective coatings prepared by Pulsed Injection Metal Organic Chemical Vapour Deposition", Thin Solid Films, Vol. 473 (2005) pp. 98-103.
[32] D.J. Jan, C.T. Lin, C.F. Ai, "Structural characterization of La0.67Sr0.33MnO3 protective coatings for solid oxide fuel cell interconnect deposited by pulsed magnetron sputtering", Thin Solid Films, Vol. 516 (2008) pp. 6300-6304.
[33] M.J. Tsai, C.L. Chu, S. Lee, "La0.6Sr0.4Co0.2Fe0.8O3 protective coatings for solid oxide fuel cell interconnect deposited by screen printing", J. Alloys Compd., Vol. 489 (2010) pp. 576-581.
[34] S. Lee, C.L. Chu, M.J. Tsai, J. Lee, "High temperature oxidation behavior of interconnect coated with LSCF and LSM for solid oxide fuel cell by screen printing", Appl. Surf. Sci., Vol. 256 (2010) pp. 1817-1824.
[35] C.L. Chu, J. Lee, T.H. Lee, Y.N. Cheng, "Oxidation behavior of metallic interconnect coated with La-Sr-Mn film by screen painting and plasma sputtering", Int. J. Hydrogen Energy, Vol. 34 (2009) pp. 422-434.
[36] W.J.Q. T.Malkow, Lsingheiser, H.Nickl, Julich, Vol. 3589 (1998)
[37] P. Jian, L. Jian, H. Bing, G. Xie, "Oxidation kinetics and phase evolution of a Fe–16Cr alloy in simulated SOFC cathode atmosphere", Journal of Power Sources, Vol. 158 (2006) pp. 354-360.
[38] E. Konysheva, U. Seeling, A. Besmehn, L. Singheiser, K. Hilpert, "Chromium vaporization of the ferritic steel Crofer22APU and ODS Cr5Fe1Y2O3 alloy", Journal of Materials Science, Vol. 42 (2007) pp. 5778-5784.
[39] T. Horita, K. Yamaji, H. Yokokawa, A. Toji, T. Uehara, K. Ogasawara, H. Kameda, Y. Matsuzaki, S. Yamashita, "Effects of Si and Al concentrations in Fe–Cr alloy on the formation of oxide scales in H2–H2O", International Journal of Hydrogen Energy, Vol. 33 (2008) pp. 6308-6315.
[40] H.S. Seo, G. Jin, J.H. Jun, D.-H. Kim, K.Y. Kim, "Effect of reactive elements on oxidation behaviour of Fe–22Cr–0.5Mn ferritic stainless steel for a solid oxide fuel cell interconnect", Journal of Power Sources, Vol. 178 (2008) pp. 1-8.
[41] J. Akedo, "Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices", Journal of Thermal Spray Technology, Vol. 17 (2008) pp. 181-198.
[42] T. Uehara, N. Yasuda, M. Okamoto, Y. Baba, "Effect of Mn–Co spinel coating for Fe–Cr ferritic alloys ZMG232L and 232J3 for solid oxide fuel cell interconnects on oxidation behavior and Cr-evaporation", Journal of Power Sources, Vol. 196 (2011) pp. 7251-7256.
[43] N. Yasuda, T. Uehara, S. Tanaka, K. Yamamura, "Development of New alloys for SOFC Interconnects with Excellent Oxidation Resistance and Reduced Cr-evaporation", ECS Trans., Vol. 35 (2011) pp. 2437-2445.