跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張哲嘉
Zhe-Jia Zhang
論文名稱: 利用鈣/鈦複合物作為 鈣鈦礦太陽能電池介孔層之研究
The Study of Perovskite Solar Cells by Using Ca/Ti Compounds as Mesoporous Layer
指導教授: 詹佳樺
Chia-Hua Chan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 92
中文關鍵詞: 鈣鈦礦鈣鈦複合物介孔層有機太陽能電池
外文關鍵詞: Ca/Ti compounds, CaTiO3
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要以新式鈣鈦礦材料作為鈣鈦礦太陽能電池介孔層之研究,本實
    驗室利用市售P90二氧化鈦作為介孔層,已能穩定製作出結構為FTO/二氧化鈦(TiO2)
    緻密層/二氧化鈦(TiO2)介孔層/CH3NH3PbI3主動層/Spiro-OMeTAD 電洞傳輸層/Ag銀
    電極的標準電池,各效率數據為Jsc=19.4(mA/cm2)、Voc=1.01(V)、FF=0.72、
    PCE=14.14%。
    特別思考到當初人類發明太陽能電池的本意就是為免於能源危機,將地球看待
    為與我們相同的個體,期許能與環境友善共存;因此為了一表我們對於環保綠能、
    永續經營的理念,在新式介孔層材料則利用廢棄蛋殼為碳酸鈣主要來源,添加四氯
    化鈦合成出Ca/Ti複合物,應用於鈣鈦礦太陽能電池介孔層。
    研究初期,新式介孔層效率不及標準電池的一半,透過調整Ca/Ti複合物之濃度、
    厚度以及優化元件間各層間的製程來提升效能,得知Ca/Ti複合物在經過500oC高溫燒
    結後,會轉為10至50奈米的條狀結構;綜合多樣分析結果,發現Ca/Ti複合物的導帶
    能階間更匹配、條狀結構使堆疊更為緻密,讓電子傳遞更正向以及減少載子再複合,
    進而提升短路電流及整體電池效能。
    以Ca/Ti複合物取代市售P90二氧化鈦製備為鈣鈦礦太陽能電池,帄均效率為
    17.16% ± 0.62,最佳效率為18.12% (Jsc=23.8(mA/cm2)、Voc=1.05(V)、FF=0.72),在
    外部量子效率方面,吸光波長從400到730nm皆在80%以上。


    In this thesis, we propose a new type perovskite material as mesoporous layer for
    Perovskite Solar Cells. In the beginning we employ ready-made P90-TiO2 as a
    mesoporous layer, and fabricated standard Perovskite Solar Cells as structure FTO / TiO2
    compact layer / TiO2 mesoporous layer / CH3NH3PbI3 active layer / Spiro-OMeTAD hole
    transport layer / silver in both anode and cathode. This cell has Jsc=19.4(mA/cm2 、
    Voc=1.01(V)、FF=0.72 and PCE=14.14%.
    The purpose of solar cells is preventing energy crisis, and we regard earth as our
    treasure ,except that we can coexist with environment friendly. To achieve the purpose of
    green energy and sustainable development, we use egg shell as the CaCO3 material to
    fabricate the mesoporous layer. Besides, we add the TiCl4 in the mesoporous layer to
    synthesis Ca/Ti compounds.
    According to the results of analysis, we find the bandgap of Ca/Ti compounds can
    be more harmonious, the strip structure become more ordered which can prevent the
    carrier from recombination, and improve the Jsc and the power conversion efficiency.
    Ca/Ti compounds substitute ready-made P90-TiO2 as mesoporous layer for
    Perovskite Solar Cells, the average efficiency is 17.16% ± 0.62,the best efficiency is
    18.12% (Jsc = 23.8 (mA / cm2), Voc = 1.05 (V), FF = 0.72), the absorption wavelength of
    external quantum efficiency from 400 to 730nm are all more than 80%.

    摘要 I Abstract II 誌謝 III 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 鈣鈦礦太陽能電池(Perovskite solar cells) 3 1-2-1 鈣鈦礦太陽能電池結構的起源 4 1-2-2 鈣鈦礦太陽能電池介孔層之材料應用與結構改善 8 1-2-3 鈣鈦礦太陽能電池主動層之材料應用與結構改善 24 1-2-4 鈣鈦礦太陽能電池其他面向之研究探討 34 第二章 實驗方法 39 2-1 實驗藥品及儀器 39 2-1-1 本實驗所使用藥品如下清單 39 2-1-2 本實驗所使用儀器如下清單 40 2-2 鈣鈦礦太陽能電池材料製備與元件製作 42 2-2-1 FTO 玻璃清潔 42 2-2-2 FTO 玻璃基板UV-Ozone 表面處理 42 2-2-3 二氧化鈦(TiO2)緻密層配製 42 2-2-4 二氧化鈦(TiO2)緻密層塗佈 43 2-2-5 二氧化鈦(TiO2)介孔層配製 43 2-2-6 二氧化鈦(P90)多孔隙層塗佈 43 2-2-7 蛋殼(CaCO3)洗淨純化 44 2-2-8 Ca/Ti 複合物奈米顆粒介孔層合成 44 2-2-9 Ca/Ti 複合物奈米顆粒塗佈 45 2-2-10 甲基碘胺(CH3NH3I)合成 45 2-2-11 鈣鈦礦(CH3NH3PbI3)溶液配製 46 2-2-12 鈣鈦礦層(CH3NH3PbI3)塗佈 46 2-2-13 電洞傳輸層Spiro-OMeTAD 配製 47 2-2-14 電洞傳輸層Spiro-OMeTAD 塗佈 47 2-2-15 蒸鍍銀電極 47 第三章 結果與討論 50 3-1 合成之材料分析與沉積結果 50 3-1-1 FTO 導電玻璃電性量測與形貌觀測 50 3-1-2 二氧化鈦(TiO2)緻密層合成結果 50 3-1-3 Mesoporous layer 介孔層合成結果 52 3-1-4 Mesoporous layer 介孔層沉積結果 55 3-1-5 主動層(CH3NH3PbI3)合成結果 55 3-1-6 主動層(CH3NH3PbI3)沉積結果 57 3-1-7 電洞傳輸層Spiro-OMeTAD 沉積結果 57 3-2 Ca/Ti 複合物應用於太陽能電池元件之深度探討 59 3-2-1 Ca/Ti 複合物作為電子傳輸層之濃度調整 59 3-2-2 Ca/Ti 複合物作為電子傳輸層之厚度調整 61 3-2-3 Ca/Ti 複合物作為電子傳輸層之優勢 64 3-2-4 Ca/Ti 複合物與P90 二氧化鈦應用於太陽能電池之元件效能 68 第四章 結論 71 第五章 文獻回顧 72

    1. S.Stolen, E.Bakken and C.E.Mohn, “Oxygen-deficient perovskites: linking structure,
    energetics and iontransport” Phys. Chem. Chem. Phys., 429-447. 2006
    2. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, “Organometal Halide Perovskites as
    Visible-Light Sensitizers for Photovoltaic Cells” J. AM. CHEM. SOC., 131, 6050. 2009
    3. J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park and N.-G. Park, “6.5% efficient perovskite
    quantum-dot-sensitized solar cell” Nanoscale,3,4088,2011
    4. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R.-H.
    Baker, J.-H. Yum, J.E. Moser, M. Grätzel and N.-G. Park, “Lead Iodide Perovskite
    Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency
    Exceeding 9%” Sci.Rep., 2,591,2012
    5. L.S. Mende and M. Grätzel, “TiO2 pore-filling and its effect on the efficiency of solid-state
    dye-sensitized solar cells” Sci.Dir.,500,2006
    6. M.M. Lee, J. Teuscher, T. Mitasaka, T. N. Murakami and H.J.Snaith, “Efficient Hybrid
    Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites” Science.,vol
    338,2012
    7. S. Miyazaki, “Photoemission study of energy-band alignments and gap-state density
    distributions for high-k gate dielectrics” J.Vac.Sci.Tachnol, B 19(6),2001
    8. M. McCune, W. Zhang and Y. Deng, “High Efficiency Dye-Sensitized Solar Cells Based on
    Three-Dimensional Multilayered ZnO Nanowire Arrays with “Caterpillarlike” Structure”
    Nano Lett., 12,3656,2012
    9. D. Bi, S.-J, Moon, L. Häggman, G. Boschloo, L. Yang, E.M.J. Johansson, M.K.
    Nazeerudding, M. Grätzel and A. Hagfeldt, “Using a two-step deposition technique to
    prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2
    mesostructures” RSC Adv., 3,18762,2013
    10. J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.-S. Lim, J.A. Chang, Y.H. Lee, H.-J. Kim, A.
    Sarkar, M.K. Nazeeruddin, M.Grätzel and S.I. Seok, “Efficient inorganic–organic hybrid
    heterojunction solar cells containing perovskite compound and polymeric hole conductors”
    Nature Photonics,Vol.7,486,2013
    11. J.M. Ball, M.M. Lee, A. Hey and H.J. Snaith, “Low-temperature processed
    meso-superstructured to thin-film perovskite solar cells” Energy Environ.Sci.,6,1739,2013
    12. M. Liu, M.B. Johnston and H.J. Snaith, “Efficient planar heterojunction perovskite solar
    cellsby vapour deposition” Nature ,Vol.501,395,2013
    13. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu and S.I.Seok, “Solvent engineering for
    high-performanceinorganic–organic hybrid perovskite solar cells” Nature materials,
    Vol.13,897,2014
    14. C. Chen, Y.Cheng, Q. Dai and H. Song, “Radio Frequency Magnetron Sputtering
    73
    Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications” Scientific
    Rep.,5,17684,2015
    15. J. Wang, M. Qin, H.Tao, W. Ke, Z. Chen, J. Wan, P. Qin, L. Xiong, H. Lei, H. Yu and
    G.Fang, “Performance enhancement of perovskite solar cells with Mg-doped TiO2compact
    film as the hole-blocking layer” AIP.Lett.,106,121104,2015
    16. N. Cheng, P. Liu, S. Bai, Z. Yu, W.Liu, S.S. Guo and X.Z. Zhao, “Application of
    mesoporous SiO2 layer as an insulating layer in high performance hole transport material
    free CH3NH3PbI3 perovskite solar cells” Journal of Power Sources, 321,71,2016
    17. B. Roose, J.-P.C. Baena, K.C. Gödel, M. Graetzel, A. Hagfeldt, U. Steiner and A. Abate,
    “Mesoporous SnO2 electron selective contact enables UV-stable perovskite
    solar cells” Nano Energy, 30,517,2016
    18. Y, Numata, Y. Sanehira and T. Miyasaka, “Impacts of Heterogeneous TiO2 and Al2O3
    Composite Mesoporous Scaffold on Formamidinium Lead Trihalide Perovskite Solar Cells”
    ACS Appl. Mater. Interfaces, 8,4608,2016
    19. H. Yoon, S.M. Kang, J.-K. Lee and M.Choi, “Hysteresis-free low-temperature-processed
    planarperovskite solar cells with 19.1% efficiency” Energy Environ. Sci.,9,2262,2016
    20. J. Burschka, N. Pellet, S.-J. Moon, R.H. Baker, P. Gao, M.K. Nazeeruddin and M.Grätzel,
    “Sequential deposition as a route to high-performanceperovskite-sensitized solar cells”
    Nature ,Vol.499,316,2013
    21. Q. Lin, A. Armin, R.C. Nagiri, P.L. Burn and P. Meredith, “Electro-optics of perovskite
    solar cells” Nature Photonics,Vol.9,106,2015
    22. M.M. Tavakoli, L. Gu, Y. Gao, C. Reckmeier, J. He, A.L.Rogach, Y. Tao and Z. Fan,
    “Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor
    deposition method” Scientific Rep., 5.14083,2015
    23. W. Zhang, S. Pathak, N. Sakai, T. Stergiopoulos, P.K. Nayak, N.K. Noel, A.A. Haghighirad,
    V.M. Burlakov, D.W.deQuiletteds, A. Sadhanala, W. Li, L. Wang, D.S. Ginger, R.G. Friend
    and H.J Snaith, “Enhanced optoelectronic quality of perovskite thin films with
    hypophosphorous acid for planar heterojunction solar cells” Nature Communictions,
    6.10030,2015
    24. N. Ahn, D.-Y. Son, I.-H. Jang, S.M. Kang, M. Choi and N.G. Park, “Highly Reproducible
    Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7%
    Fabricated via Lewis Base Adduct of Lead(II) Iodide” J. Am. Chem. Soc., 137,8696,2015
    25. M. Yang, T. Zhang, P. Schulz, Z. Li, G. Li, D.H. Kim, N. Guo, J.J. Berry, K.Zhu and Y.
    Zhao, “Facile fabrication of large-grain CH3NH3PbI3_xBrx films for high-efficiency solar
    cells via CH3NH3Brselective Ostwald ripening” Nature Communications., 7.12305,2016
    26. Q. Tai, P. You, H. Sang, Z. Liu, C. Hu, H.L.W. Chan and F. Yan, “Efficient and stable
    perovskite solar cells preparedin ambient air irrespective of the humidity” Nature
    Communications., 7.11105,2016
    74
    27. C.-H. Chiang and C.-G. Wu, “Bulk heterojunction perovskite–PCBM solar cellswith high
    fill factor” Nature Photonics., Vol.10,196,2016
    28. D.-Y. Son, J.-W. Lee, Y. J. Choi, I.-H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D.
    Kim and N.G. Park, “Self-formed grain boundary healing layer for highly e_cient
    CH3NH3PbI3 perovskite solar cells” Nature Energy.,Vol.1,2016
    29. Y. Wu, X. Yang, H. Chen, K. Zhang, C. Qin, J. Liu, W. Peng, A. Islam, E. Bi, F. Ye, M.
    Yin, P. Zhang and L. Han, “Highly compact TiO2 layer for efficient hole-blocking in
    perovskite solar cells” Appl. Phys. Expr., 7,052301,2014
    30. R. S. Sanchez and E. M. Marza, “Light-induced effects on Spiro-OMeTAD films and hybrid
    lead halide perovsite solar cells” Solar Energy Mate. & Sola. Cell., 158,189,2016
    31. L.M. L.-Sanchez, S.-W. Lee, T. Sekino, and V.R. –Gonzalez, “Practical microwave-induced
    hydrothermal synthesis of rectangular prism-like CaTiO3” CrystEngComm., 15,2359,2013
    32. 林育葳,「以CaTiO3應用於鈣鈦礦太陽能電池電子傳輸層之研究」,國立中央大學 機
    械工程所,民國105年
    33. Y.D. Gujarathi, and S.K. Haram, “Near room temperature approaches for the preparation of
    air-stable and crystalline CH3NH3PbI3” Materials Chemistry and Phys., 173,491,2016
    34. F.M. Pontes, C. D. Pinheiroi, E.Longo, E. R. Leitel, S, R, Lazaro, J, A. Varela, P. S. Pizani,
    T. M. Boschi, and F. Lanciotti, “The role of network modifiers in the creation of
    photoluminescence in CaTiO3” Materials Chemistry and Phys., 78,227,2002
    35. X. XU, H. Zhang, J. Shi, J. Dong, Y. Luo, D. Li, and Q. Meng, “Highly efficient planar
    perovskite solar cells with a TiO2/ZnO electron transport bilayer” J. Mater. Chem. A,
    3,19288,2015
    36. Y. Hou, J. Yang, Q. Jiang, W. Li, Z. Zhou, X. Li, and S. Zhou, “Enhancement of
    photovoltaic performance of perovskite solar cells by modification of the interface between
    the perovskite and mesoporous TiO2 film” Solar Energy Mate. & Sola. Cell.,
    155,101,2016

    QR CODE
    :::