跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李采慈
Tsai-Tzu Li
論文名稱: 薄膜製程射頻被動元件設計
Design of RF Passive Components Using TF-IPD Technology
指導教授: 林祐生
Yo-Shen Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系在職專班
Executive Master of Electrical Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 91
中文關鍵詞: 薄膜積體式被動元件,高整合度被動元件
外文關鍵詞: Highly integrated passive component, Thin-Film Integrated Passive Device
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 積體式被動元件,因其具有微小化、低成本及降低研發時程等特點,於射頻前端模組整合應用有其優勢。本研究使用薄膜製程平台進行積體式被動元件的開發,以達成體積小及高性能的射頻被動元件為目標。
    本論文首先提出一個建立薄膜積體式被動元件資料庫的標準流程,即先針對元件的高頻特性以等效電路進行元件之模型化,再經由商用的數值電磁軟體輔助設計、製程實現與量測驗證,建立被動元件資料庫。且由設計、製程實現與量測驗證的流程中建立薄膜積體式被動元件分析設計技術,建立射頻被動元件之等效電路模型,並進行製程變異所造成之電性公差分析,以供設計者快速且精確的使用;亦提出數個低通濾波器設計實例,驗證所建立元件等效電路模型於射頻電路設計之可用性與模型之準確度。
    本研究以此流程分別實現應用於750MHz之CATV 及2.4 GHz 之WiFi 模組中的低通濾波器,其元件植入損耗分別為1.9dB及0.43dB,並有優良的截止帶抑制能力。 並利用薄膜製程的優點,與同類商用產品尺寸能有效減少至0.8 × 0.8 mm2 與1.4 × 4.3 mm2。本論文中提出的低通濾波器且有簡單清楚的設計流程,並針對實際實現電路的各項設計考量均詳細加以研究,同時也為未來進一步的改良提供更多的設計經驗。


    Integrated passive device (IPD) technology has been developed and adopted to achieve small form factor size, low cost, and less development time in radio front-end transceiver module application. In this study, thin-film integrated passive device (TF-IPD) technology using glass wafer is proposed to enable compact and high performance circuit components for RF application.
    First, the passive element library including R, L and C, and the RF characterization procedure was established. These library elements are modeled using equivalent circuits and investigated using full-wave EM simulation with experimental verification. Good agreement between simulated and measured results validates our design process. We also analyzed the process variation effect so as to achieve design optimization and fast design cycle-time.
    Specifically, this thesis will present a good correlation between measured and simulated results, and demonstrates the effectiveness of EM simulation in the RF filter design so as to enable faster time to market for wireless communication application. Harmonic-rejection low-pass filters have been designed and fabricated in TF-IPD technology for 750MHz CATV and 2.4GHz Wi-Fi applications. They exhibit in-band insertion loss of <1.9dB and <0.43dB, good harmonic rejections of >30dB, and compact die sizes of 0.8×0.8×0.2 mm3 and of 1.4×4.3×0.2 mm3, respectively.

    論文摘要 英文摘要 致謝 論文目錄 圖形列表 表格列表 第一章 緒論.......1 1.1研究動機與目的.......1 1.2研究目標與章節提要.......5 第二章 整合式被動元件技術.......6 2.1整合式被動元件類型.......6 2.2薄膜被動元件技術發展.......10 2.3薄膜被動元件製程探討.......11 2.4結論.......12 第三章 被動元件之設計與製作.......13 3.1簡介.......13 3.2製程考量.......18 3.3螺旋型電感設計.......20 3.4平行板電容.......32 3.5電阻器.......38 3.6結論.......44 第四章 濾波器之設計與製作.......45 4.1簡介.......45 4.2濾波器設計簡介.......45 4.3應用於Wi-Fi之薄膜低通濾波器.......46 4.4應用於CATV之薄膜低通濾波器. .......62 第五章 結論.......73 參考文獻.......75

    [1]B. Razavi, RF Microelectronics, Prentice Hall, 1997.
    [2]G. Carchon, “3D Microwave Module Packaging,” imec [Online]. Available: http://www2.imec.be/imec_com/imec_com_homepage.php
    [3]Y. J. Ko, J. Y. Park, J. H. Ryu, K. H. Lee, and J. U. Bu, “A miniaturized LTCC multi-layered front-end module for dual band WLAN (802.1l a/b/g) applications,” Microwave Symposium Digest Pagers, pp. 563-566, 2004.
    [4]C. L. Tsai and Y. S. Lin, “Analysis and design of new single-to-balanced multicoupled line bandpass filters using low-temperature co-fired ceramic technology,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 2902–2912, 2008.
    [5]R. R. Tummala, Fundamentals of Microsystems Packaging, McGraw-Hill, Singapore, 2001.
    [6]D. W. Kim, I. H. Jeong, H. S. Sung, T. O. Kong, J. S. Lee, C. M. Nam, and Y. S. Kwon, “High performance RF passive integration on Si smart substrate,” International Microwave Conference, pp. 1561-1564, 2002.
    [7]C. M. Nam and I. H. Jung, “High Performance RF Integrated Circuits using the Silicon Based RE Integrated Passive Device (RFIPD),” Fifth Int. Conf. Communications and Signal Processing, pp. 1357-1361, 2005.
    [8]M. Raieszadeh, “High-Q Integrated Inductors on Trenched Silicon Islands,” M. S. thesis, GT 2005.
    [9]M. De Samber and L. Tegelaers, “Technology for passive integration,” Philips J. Res, vol. 51, pp. 389-410, 1998.
    [10]H. S. Kim, K. Chong, Y.H. Xie, M. Devincentis, T. Itoh, A. J. Becker, and K. A.Jenkis, “A porous Si based novel isolation technology for Mixed-Signal Integrated Circuits,” IEEE Symp. on VLSI technology, pp. 160-161, 2002.
    [11]A.S. Royet, R. Cuchet, D. Pellisier, and P. Ancey, “On the investigation of spiral inductors processed on Si substrates with thick porous Si layer,” European Solid-State Device Research, pp.111-114, Sep. 2003.
    [12]H. Jiang, Ye Wang, J. A. Yeh, and N. C. Tien, “On-chip Spiral Inductors Suspended over Deep Copper-Lined Cavities,” IEEE tran. MTT, vol. 48, No. 12, pp. 2415-2423, Dec. 2000.
    [13]J. B. Yoon, Y. S. Choi, B. Kim, and E. Yoon, “CMOS-Compatible Surface-Micromachined Suspended- Spiral Inductors for Multi-GHz Silicon RF ICs,” IEEE Electron Device Lett. , vol. 23, pp. 591-593, Oct. 2002.
    [14]Clearfield, H.M. Wijeyesekera, S. Logan, E.A. Luu, A. Gieser, D. Lin, C.M. Jing, J. Rogers, W.B. Scheck, D. Benson, and D. He, “Integrated passive devices using Al/BCB thin films,” Multichip Modules and High Density Packaging, 7th International Conference, pp.501-505, Apr. 1998.
    [15]G. Carchon, P. Pieters, K. Vaesen, W. De Raedt, B. Nauwelaers, and E. Beyne, “Multi-layer thin film MCM-D for the integration of high-performance wireless front-end systems, ” Microwave Journal, vol. 44, pp. 96-110, Feb. 2001.
    [16]K. Zoschke, M. Wolf, T. Jürgen, E. Michael, F. Oswin, S. Thomas, R. Katrin, and S. Herbert, “Thin Film Integration of Passives - Single Components, Filters, Integrated Passive Devices,” 54th Electronic Components and Technology Conference, pp. 294-301, 2004.
    [17]I. Bahl, Lumped Elements for RF and Microwave Circuits, Artech House, 2003.
    [18]J. Childers, Physics, McGraw-Hill, 2001.
    [19]E. Bogatin, Signal Integrity – Simplified, Prentice Hall, 2006.
    [20]R. Kennedy, “Materials for thin film resistors,” Advancing Microelectronics, pp.12, Oct. 1999.
    [21]S. Yoshitomi, “Analysis and simulation of spiral inductor fabricated on silicon substrate,” IEEE Electronics, Circuits and Systems Conference, pp. 365–368, Dec. 2004.
    [22]C. Patrick Yue , and S. Simon Womg, “On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC’s,” IEEE J. Solid-State Circuit, vol. 33, pp. 743-752, May 1998.
    [23]S.-S. Song, S.-W. Lee, J. Gil, and H. Shin, “Simple Wide-Band Metal-Insulator (MIM) Capacitor Model for RF Application and Effect of Substrate Grounded Shields,” Japanese Journal of Applied Physics, vol. 43, pp. 1746, 2004.
    [24]R. Ulrich, and L. Schaper, Integrated Passive Component Technology, New York: Wiley Interscience IEEE Press, 2003.
    [25]Z. Wang, J. Deen and A. Rahal, “Accurate Modelling of Thin-Film Resistor up to 40 GHz,” Proceeding ESSDERC, pp. 307-310, Sep. 2002.
    [26]J.S. Hong and M.J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, 2001.
    [27]2.488Gbps Downstream/1.244Gbps Upstream Three-Wavelength GPON ONU Transceiver. [Online]. Available: http://www.delta.com.tw/product/cp/fot/download/pdf/OPGP-34-A4B3RA.pdf
    [28]J. K. Cho, K. S. Nah, and B. H. Park, “An On-Chip Differential Inductor and Its Use to RF VCO for 2 GHz Applications,” Journal of Semiconductor Technology and Science, vol.4, no. 2, Jun, 2004.
    [29]A. Watson, Y. Mayevskiy, P. Francis, K. Hwang, G. Srinivasan, andA. Weisshaar, “Compact modeling of differential spiral inductors insi-based RFICs,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig.,Jun. 2004, vol. 2, pp. 1053–1056.

    QR CODE
    :::