跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張健煌
CHIEN-HUANG CHANG
論文名稱: 漸增載重之壓密速算公式
The quick-estimation formula of the settlement induced by time-dependent loading
指導教授: 李顯智
Hin-Chi Lei
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 90
語文別: 中文
論文頁數: 120
中文關鍵詞: 單向度壓密GibsonTerzaghi速算公式
外文關鍵詞: one dimensional consolidation, Terzaghi, quick-estimation formula, Gibson
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Terzaghi單向度壓密理論被廣泛的應用在工程界,然而Terzaghi單向度壓密理論之優點是解析解易求得﹔缺點則是低估超額孔隙水壓的變化。往後學者如Gibson等人便根據上述的理論缺失來進行修正,並於1967年提出飽和黏土的壓密方程式,即Gibson-England-Hussey(簡稱G.E.H.)壓密理論,為一非線性的偏微分方程式。其應用範圍不受限於小應變的情況。而其優點為假設條件較符合土壤壓密的實際情況﹔缺點則是無法直接求得解析解。但是由最近所發表的文獻中,可知已經能夠將G.E.H.理論的單向度壓密方程式予以線性化。
    雖然G.E.H.理論已經可求得解析解,但是求解上卻太過於麻煩。故本論文研究的目的乃在於推導出土壤受動態載重時壓密度的速算公式,並與Terzaghi壓密理論比較,提供計算壓密沉陷的參考。


    The merit of the Terzaghi theory is that the analytical solution can be obtained easily. How-ever , this theory sometimes underestimates the variation of the excess pore water pressure. Ano-ther theory proposed by Gibson et. al. is more realistic but more difficult to handle due to its nonlinearity.
    This research try to derive a quick-estim-ation formula can calculate the settlement induc-ed by time-dependent loading. The results will be compared with these obtained by the Terzaghi’s theory.

    中文摘要 英文摘要 目錄 圖目錄 第一章 緒論 1-1研究動機與目的 1-2研究方法 1-3論文內容 第二章 Gibson-England-Hussey壓密理論簡介 2-1前言 2-2 G.E.H.壓密控制方程式的推導 2-2-1分析模型及座標系統的選取 2-2-2 G.E.H.控制方程式的推導 2-3 G.E.H.薄土層壓密控制方程式的推導 第三章 G.E.H.薄土層壓密控制方程式的求解 3-1薄土層壓密控制方程式之線性化 3-1-1變數轉換 3-1-2變數角色變換 3-2新自變數q的物理意義 3-3薄土層壓密控制方程式之近似解 3-3-1分析模型及控制方程式的介紹 3-3-2控制方程式及其解析解的求解 第四章 G.E.H.薄土層壓密方程式的近似解 4-1牛頓-拉夫森法(Newton-Raphson Method) 4-2速算公式法 第五章 實例分析 5-1 實例分析 5-2 不同載重加載方式之實例分析 第六章 結論 6-1 結論 附錄一 附錄二 參考文獻

    [1] Lee,K.,“Discussion on Terzaghi’s Concept of Consolidation,”
    Geotechnique, Vol.34,No.1,pp. 131-132(1984).
    [2] Richart, F.E.,“A Review of the Theories for Sand Drains,”
    Proc.Am.Soc.civ.Engrs,SM3,No.1301,(1957).
    [3] Lo,K.Y.,“Discussion on Rowe, Measurement of the Coefficient of
    Consolidation of Lacustrine Clay,” Geotechnique, Vol 10,No 1,pp.
    36-39(1960).
    [4] Janbu, N.,“Consolidation of Clay Layers Basedon NonLinear Stress-
    Strain,”Proc.6th Int. Conf.Soil Mech.Vol.
    2,pp. 83-87(1965).
    [5] Barden,L. and Berry,P.L.,“Consolidation of Normally Consolidated Clay,”
    Pro.Am.Soc.Civ Engrs, SM5 ,No.4481, pp.15-35 (1965)
    [6] Davis,E.H.and Raymond,G.P.,“A Non-Linear Theory of Consolidation,”
    Geotechnique,Vol 15,No.2,pp.161-173 (1965).
    [7] Gibson,R.E.,England,G.L.and Hussey,M.J.L.,“The Theory of One Dimensional
    Consolidation of Saturated Clay: I.Finite Non-Linear Consolidation of Thin
    Homogeneous Layers,” Geotechnique,Vol 17,pp.261-273(1967).
    [8] Gibson, R.E., Schiffman,R.L.and Cargill,K.W.,“The Theory of One Dimesi-
    onal Consolidation of Saturated Clay: Finite Non Linear Consolidation of
    Thick Homogeneous Layers,” Can.Geotech.J﹒,Vol 18,pp.280-293(1981).
    [9] Lei,H.C. and Chang,H.W.,“A List of Hodograph Transformations and Exactly
    Linearizable Systems,”The Chinese Journal of Mechanics,Vol 12,No.3,
    September (1996).
    [10] Poskitt, T.J.,“The Consolidation of Saturated Clay with Variable Perm-
    eability and Compressibility,” Geotechnique,Vol 19,No 2, pp. 234-252
    (1969).
    [11] Feldkamp,J.R.,“Permeability Measurement of Clay Pastes by a Non-Linear
    Analysis of Transient Seepage Consolidation Tests,” Geotechnique,Vol.
    39,No.1,pp.141-145(1989).
    [12] Znidarcic,D.,Schiffman,R.L.,Pane,V.,Croce,P.,Ko,H.Y.and Olsen,H.W.,“ The
    Theory of One Dimensional Consolidation of Saturated Clays: Constant Rate
    of Deformation Testing and Analysis,” Geotechnique,Vol 36,No 2,pp.227-237
    (1986).
    [13] Feldkamp,J.R.,Swartzendruber,D.and Shainberg,I.,“Use of an Automated Ten-
    sion Cell to Measure Physical Properties of Consolidation System,”Col-
    loid Polymer Sci., Vol 261,pp. 277-285(1983).
    [14] Croce,P.,Pane,V.,Znidarcic, D.,Ko, H.Y.,Olsen,H.W. and Schiffman,R.L.,
    “Evaluation of Consolidation Theories by Centrifugal Modelling,” Proc.
    Conf.Applications of Centrifugal Modelling to Geotechnical Design, Manch-
    ester University, pp. 380-401(1984).
    [15] Mikasa,M.and Takada, N.,“Selfweight Consolidation of Very Soft Clay by
    Centrifuge,” In Sedimentation /Consolidation Models ,pp.121-140(eds
    R.N.Yong and F.C. Townsend).New York :American Society of Civil Engineers
    (1984).
    [16] Schiffman,R.L.,Pane,V. and Gibson ,R.E.,“The Theory of OneDimensional
    Consolidation of Saturated Clays: Ⅵ an Overview of Nonlinear Finite
    Strain Sedimentation and Consolidation,”In Sedimentation / Consolidation
    Models,pp 1-29(eds R.N.Yong and F.C. Townsend).New York: American Society
    of Civil Engineers(1984).
    [17] Chakarbarty, J.,“Theory of Plasticity,”McGraw-Hill, New York(1987).
    [18] Hill,R.,“The Mathematical Theory of Plasticity,”Oxford University
    Press,London(1950).
    [19] Whiteam,G.B.,“Linear and Nonlinear Waves,” Wiley,New York(1974).
    [20] Courant,R. and Friedrich,K.O.,“Supersonic Flow and Shock Waves,”
    Springer-Verlag, New York(1948).
    [21] Courant,R.and Hibbert,D.,“Methods of Mathemmatical Physics(Vol. 2),”
    Inter-science Publishers, New York (1962).
    [22] Garabedian,P.R.,“Partial Differential Equation,”Chelsea Publishing
    Company,New York(1986).
    [23] M.R.Spiegel,p252,formula 128
    [24] Mikasa,M. and Takada,N., ”Selfweight Consolidation of Very Soft Clay by
    Centrifuge,” In Sedimentation /Consolidation Models, pp. 121-140(eds.
    R. N. Yong and F. C. Townsend),New York:American Society of Civil Engi-
    neers.

    QR CODE
    :::