| 研究生: |
謝坤峰 Kun-Fong Shieh |
|---|---|
| 論文名稱: |
奈米壓印微影技術之脫模劑與表面能的研究 Study of Mold Releasing Agent and Surface Energy for Nanoimprint Lithography |
| 指導教授: |
柯富祥
Fu-Hsiang Ko 周正堂 Cheng-Tung Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 奈米壓印微影技術 、表面能 |
| 外文關鍵詞: | surface energy, nanoimprint |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中分為兩個研究的主題。一個是應用在奈米微壓印製程上之脫模劑與表面能之研究;另一個是電子束曝光的溫度分佈研究。
此段為第一個主題。奈米微壓印製程主要仰賴mold與光阻間的接觸,是故在此二者接觸時的濕性與黏滯性質是關鍵的議題。而mold與光阻接觸時的黏滯力強度是由表面能大小決定。在此研究中,我們利用FPTS、FOTS在mold表面形成自組裝薄膜,其用途是在奈米微壓印製程中當作一反黏滯層以利脫模。FPTS、FOTS的形成機制我們利用FTIR來驗證。並且我們利用接觸角系統、橢圓測厚儀、原子力顯微鏡等機台來探究FPTS、FOTS其本身性質如:表面能、薄膜厚度、表面粗糙度等。由結果我們證明了自組裝FOTS的mold在與光阻壓印完分開後,其光阻較少缺陷且表面粗糙度較低,這是因為FOTS較FPTS有較多的-CF2,導致表面能較低,是故分開效果較佳。除此之外,表面能不只影響了壓印後光阻的缺陷多寡,也直接影響了在壓印時圖案的解析能力。另一方面,我們使用Oss&Good 理論去估計一些光阻、不同狀態下的二氧化矽、不同組成的PMMA-PMAAM-PS共聚高分子的表面能。其目的在於建立一個表面能的資料庫,而在未來能夠作為在奈米微壓印製程選擇壓印材料的參考。
此段為第二個主題。在此部份的研究,我們發展了一套方法,可去估計光阻在電子束微影曝光時的溫度分佈。我們所選用的光阻有SU-8、NEB、193光阻。由結果我們可看到SU-8光阻的溫度分佈較另外二者較高,這是因為SU-8是屬於厚膜光阻,溫度較難散去,是故溫度較高。再者,此方法有以下等優點:簡單、成本低…..。
There are two major topics in this thesis. One is the research of mold release agents and surface energy for nanoimprint lithography . The other is the temperature distribution of e-beam patterning.
The following is the first major topic. As all imprint techniques rely on contact between resist and mold, the wetting and adhesion characteristics of the polymer materials to the substrate are critical issues. The strength of adhesion between mold surface and resist is characterized by the amount of energy required to separate the two materials. In this study, trichloro(3,3,3-trifluoropropyl)silane (FPTS) and trichloro(1H, 1H, 2H, 2H- perfluorooctyl)silane (FOTS) are used for self-assembled monolayers (SAM) on mold as releasing and anti-sticking layer for nanoimprint. Their formation mechanism can be provided the evidence of a chemical reaction between the head groups of different fluorinated trichlorosilanes and the surface hydroxyl groups by FTIR. We use contact angle system、ellipisometer、atomic force microscopy to discuss the nature properties of SAMs including surface energy,film thickness,surface roughness etc. The results demonstrated that the resist surface revealed the lower defect and roughness after separation of imprinting by mold with SAMs of FOTS monolayer, ascribed to the FOTS monolayer with a larger amount of -CF2 than FPTS monolayer resulted in lower surface energy. Furthermore, the surface energy effect influenced not only the defect on the resist after separation, but the resolution of patterning of nanoimprint directly. In addition,we use Oss&Good theory to estimate the surface energy of some materials including some photoresists ,silicon dioxide,copolymers of PMMA-PMAAM-PS . In this purpose, we hope establishing a database to be used as a reference in selecting imprinted materials for nanoimprint lithography.
The following is the second major topic. In this research, we develop a new method to estimate the temperature distribution of e-beam patterning. The resists we choose are SU-8,NEB,193 photoresists. The results demonstrated SU-8 photoresist has higher temperature distribution than the other ones because of its thicker film. This method has some advantages like simple、cheap etc.
參考文獻
1. B.Heiddari, I.Maximov, E.-L.Sarwe,and L.Montelius, B J.Vac.Sci.Technol., B 17,2961(1999).
2. B.Faircioth, H. Rohrs, R.Tiberio, R. Ruoff, and R. R. Krchnavek, J.Vac. Sci. Technol., B 18, 1866(2000).
3. D. Eisert, W.Braun,S.Kuhn, J. Koeth, and A. Forchel, Microelectron. Eng. 46,179(1999).
4. Eckert, E. R. G. and Goldstein, R. J., 1970, Measurements in Heat Transfer, McGraw-Hill,New York
5. Dabiri,D.and Gharib, M., 1990,“Digital particle image thermometry and its application to a heated vortex ring,” Fluid Measurement and Instrumentation Forum. ASME FED. 95:27-34.
6. Chu,S.S. and Grigoropoulos,C. P., 2000, “Determination of kinetic energy distribution in a Laser –Ablated titanium plune by emission and Laser Induced Fluorescence Spectoscopy,”Journal of Heat Transfer, Nov, 2000,Vol. 122,pp.771-775.
7. 張俊彥,鄭晃忠,積體電路製程及設備技術手冊,中華民國產業科技發展協會,中華民國電子材料與元件協會出版,第十二章, 1997.
8. The International Technology Roadmap for Semiconductor, Semiconductor Industry Association, Santa Clara, CA (2002).
9. 柯富祥、葛祖榮及謝忠益,電子月刊,第9卷第9期,141頁 (2003)。
10. P. Rai-Choudhury, “Handbook of Microlithography, Micromachining and Microfabrication”, SPIE Press, chap 2 (1997).
11. R. S. Dhaliwal, W. A. Enichen, S. D. Golladay, M. S. Gordon, R. A. Kendall, L. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel and E. V. Tressler, IBM J. Res. & Dev., 45(5), 615 (Sep. 2001).
12. J. A. Liddle, S. D. Berger, C. J. Biddick, M. I. Blankey, K. J. Bolan, S. W. Bowler, K. Brady, R. M. Camarda, W. F. Connely, A. Crorken, J. Custy, R. C. Fallow, J. A. Felker, L. A. Fetter, B. Freeman, L. R. Harriott, L. Hopkins, H. A. Huggins, C. S. Knurek, J. S. Kraus, D. A. Mixon, M. M. Mkrtchyan, A. E. Novembre, M. L. Peabody, W. M. Simpson, R. G. Tarascon, H. H. Wade, W. K. Waskiewicz, G. P. Watson, J. K. Williams, D. L. Windt, Jpn. J. Appl. Phys., 34, 6663 (1995).
13. P. R. Krauss, P. J. Renstrom and S. Y. Chou, Science, 272, 85 (1996).
14. R. F. Pease, Nature, 417, 802 (2002).
15. H. P. W. Koops and J. Grob, “Springer Series in Optical Sciences: X-ray Microscopy”, Springer, Berlin, v43 (1984).
16. S. D. Berger and J. M. Gibson, Appl. Phys. Lett., 57(2), 153 (1990).
17. H. C. Pfeiffer, G. O. Langner and M. S. Sturans, Appl. Phys. Lett., 39, 775 (1981).
18. H. C. Pfeiffer and W. Stickel, Microelectron. Eng., 27, 143 (1995).
19. H. C. Pfeiffer and W. Stickel, FUTURE FAB International, 187 (Dec. 2002).
20. T. Ishibashi, T.Toyoshima, N.Yasuda, T. Kanda, H.Tanaka, Y. Kinoshita, N. Watase and R. Eakin, Jpn. J. Appl. Phys. 40, 419 (2001).
21. J. H. Chung, S. J. Choi, Y. Kan, S. G. Woo and J. T. Moon, Proc. SPIE, v3999, 305 (2000).
22. H. L. Chen, F. H. Ko, L. S. Li, C. K. Hsu, B. C. Chen and T. C. Chu, Jpn. J. Appl. Phys, v41, 4163 (2002).
23. H. L. Chen, C. H. Chen, F. H. Ko, T. C. Chu, C. T. Pan, and H. C. Lin, J. Vac. Sci. Technol. B20(6), 2973-2978 (2002).
24. F.-H. Ko, H.-C. You, C.-C. Hsu, H.-L. Chen, T.-C. Chu, T.-F. Lei, Micro and Nano Engineering (MNE), PT-P-09, Cambridge, UK (2003).
25. J.-K. Chen, F.-H. Ko, H.-L. Chen and F.-C. Chang, Jpn. J. Appl. Phys, v42, 3838-3841 (2003).
26. J.-K. Chen, F.-H. Ko, H.-K. Chen and C.-T. Chou, J. Vac. Sci. Technol., accepted (2004).
27. Nonogaki, S., Ueno, T., and Ito, T., “Microlithography Foundamentals in Semiconductor Devices and Fabrication Technology”, Marcel Dekker, New York, pp201, 1998.
28. 施錫龍, 電子束晶圓步進系統簡介 ,電子月刊第二卷第二期,1996.
29. 許兼貴,深紫外線抗反射技術及次100奈米世代電子束直寫阻劑特性研究,國立清華大學原子科學系碩士論文,2001.
30. J. R. Hollahan et al. Eds, “Techniques and Applications of Plasma Chemistry”, Wiley, 1974.
31. 郭昭輝,謝國煌,自組裝薄膜技術之發展 ,化工技術月刊第十一卷第三期,2003.
32. A. N. Broers, J. M. Harper, and W. W. Molzen, Appl. Phys. Lett. 33, 392,1978.
33. D. Flanders, Appl. Phys. Lett. 36, 93 ,1980.
34. K. Early, M. L. Schattenburg, and H. I. Smith, Microelectron. Eng. 11,317 ,1990.
35. M. A. McCord and R. F. P. Pease, J. Vac. Sci. Technol. B 4, 86,1986.
36. J. W. Lyding, T. C. Shen, J. S. Hubacek, J. R. Tucker, and G. C. Abelin,Appl. Phys. Lett. 64, 2010 ,1994.
37. T. R. Albrecht, M. M. Dovek, C. A. Lang, P. Grutter, C. F. Quate, S. W.J. Kuan, C. W. Frank, and R. F. W. Pease, J. Appl. Phys. 64, 1178 1988,.
38. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett. 67, 3114,1995; Science 272, 85, 1986; P. R. Krauss and S. Y. Chou, the 39th,EIPB, Scottsdale, AZ, May 30–June 2, 1995 @J. Vac. Sci. Technol. B 13,2850 ~1995 .
39. I. Rubin, Injection Molding ~Wiley, New York, 1972.
40. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, J. Vac. Sci. Technol. B 14,6 ,1996 .
41. 22.Michael C. McAlpine, Robin S. Friedman, and Charles M. Lieber, nano letters,3,4,443(2003).
42. L. J. Guo, P. R. Krauss, and S. Y. Chou, Appl. Phys. Lett. (submitted).
43. Matsunaga, T. J. Appl. Polym. Sci. 1977, 21, 2847.
44. Ko, Y. C.; Rather, B. D.; Hoffman, A. S. J. Colloid Int. Sci. 1981,82, 25.
45. Ruckenstein, E.; Lee, S. H. J. Colloid Int. Sci. 1987, 117, 172.
46. Tretinnikov, O. N. Langmuir 1997, 13, 2988.
47. Correia, N. T.; Ramos, J. J. M.; Saramago, N. J. V.; Calado, J. C.G. J. Colloid Int. Sci. 1997, 189, 361.
48. Fowkes, F. M. J. Phys. Chem. 1962, 66, 382.
49. Fowkes, F. M. J. Phys. Chem. 1968, 72, 3700.
50. Van Oss, C. J.; Chaudhury, M. K.; Good, R. J. Chem. Rev. 1988, 88, 927.
51. Van Oss, C. J.; Ju, L.; Chaudhury, M. K.; Good, R. J. J. Colloid Interface Sci. 1989, 128, 313.
52. Fowkes, F. M. J. Phys. Chem. 1962, 66, 382.
53. Ho, C. C. Colloid Polym. Sci. 1989, 267, 643.
54. Owens,D.K. and Wendt,R.C.,J.Appl.Polym. Sci.,13,1741,1969.
55. Wu,S.,J.Polymer Sci.Part C,34,19,1971.
56. Sagiv, J. J. Am. Chem. Soc. 1980,102,92.
57. Tripp, C. P.; Hair, M. L. J . Phys. Chem. 1993, 97, 5693.
58. Tripp, C. P.; Hair, M. L. Langmuir 1991, 7,923.
59. Astandard four-parameter logistic function wasused to fit a sigmoidal function through theexperimental data. (See for example: Agresti, A. Analysis of Ordinal Categorical Data; Wiley-Interscience: New York, 1984.)
60. Kui-Xiang Ma and Tai-Shung Chung, J. Phys. Chem. B 2001, 105, 4145-4150
61. Good, R. J. In Contact Angle, Wettability, and Adhesion; VSP: Utrecht, The Netherlands, 1993.
62. H. weiss, Surf. Coat. Technol. 71, 201 (1995.)
63. John Tsibouklis, Maureen Stone, Adrian A. Thorpe, Paul Graham, Thomas G. Nevell, and Richard J. Ewen. Langmuir 1999, 15, 7076-7079
64. S. H Goh, S. Y. Lee, X. Zhou. Macromolecules 1998, 31, 4260-4264
65. Juzhen Yi and S. H. Goh. Macromolecules 2001, 34, 4662-4665
66. Shiyong Liu, Ming Jiang, Chi-Ming Chan, Lu-Tao Weng. Macromolecules 2001, 34, 3802-3804
67. Shiyong Liu, Chi-Ming Chan, Lu-Tao Weng, Lin Li, Ming Jiang. Macromolecules 2002, 35, 5623-5629