跳到主要內容

簡易檢索 / 詳目顯示

研究生: 沈聖杰
SHENG-JIE SHEN
論文名稱: 以超穎校正器提升三片式庫克鏡組光學品質之研究
Use meta-corrector to optimize Cooke triplet optical performance
指導教授: 王智明
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 72
中文關鍵詞: 超穎校正器超穎透鏡庫克三透鏡
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高級相機鏡頭通常由六個以上的鏡片組成,以消除鏡頭的像差,提高圖像品質。 然而,這種笨重的鏡頭組合限制了相機鏡頭的小型化。 在這篇論文中,我們提出了一種由超薄超穎校正器和 Cooke triplet組成的相機鏡頭系統。 超穎校正器用於消除 Cooke triplet的球面像差。首先,我們使用商業軟體 ZEMAX 來計算超穎校正器的理想相位分佈。接下來,我們使用超穎校正器對 Cooke triplet的聚焦品質進行了數值分析。從光斑點列圖觀察,在加上超穎校正器後,Cooke triplet的光斑尺寸可以從49.02μm大幅縮小到0.428μm。 此外,超穎校正器提高了 Cooke triplet的圖像品質。而在加上超穎校正器後,Cooke triplet的空間頻率提高許多且接近繞射極限,從以上分析可以發現超穎校正器可以消除大部分的球差。


    High-level camera lens usually consists of more than six lenses to eliminate the aberration of lenses and improve image quality. However, this heavy lens combination limits the miniaturization of the camera lens. In this work, we proposed a camera lens system which consists of an ultra-thin meta-corrector and Cooke triplet. The meta-corrector is used to eliminate the spherical aberration of the Cooke triplet. We used the commercial software ZEMAX to calculate the ideal phase distribution of the meta-corrector. We next numerically investigated the focusing quality of the Cooke triplet with a meta-corrector. The ray-tracing simulation shows that the focal spot size of the Cooke triplet can be significantly reduced from 49.02 μm to 0.428 μm after adding a meta-corrector. Moreover, the meta-corrector improved the image quality of the Cooke triplet. The spatial resolution of the Cooke triplet improved when a meta-corrector was added and is closed to diffraction limit

    摘要............................................................................................................ ii Abstract..................................................................................................... iii 致謝............................................................................................................iv 目錄.............................................................................................................v 表目錄..................................................................................................... viii 1-1 文獻回顧...........................................................................................1 1-2 研究目標...........................................................................................6 第 2 章 基本理論......................................................................................8 2-1 光程差...............................................................................................8 2-2 單色像差.........................................................................................12 2-3 光斑點列圖(spot diagram) .............................................................13 2-4 Modulation Transfer Function(MTF) .............................................15 2-5 Fresnel lens 跟 Metalens.................................................................17 2-6 點擴散函數 Point spread function(PSF) ........................................18 2-7 光學系統頻率響應.........................................................................18 2-8 Airydisk..........................................................................................19 2-9 庫克三透鏡(Cooke triplet).............................................................19 vi 2-10 相位調製.......................................................................................20 2-11 Rayleigh sommerfeld diffraction ..................................................24 第 3 章 庫克三透鏡與超穎校正器之設計.............................................28 3-1 binary 2............................................................................................28 3-2 模擬流程.........................................................................................28 3-3 ZEMAX 設計過程..........................................................................29 3-4 binary 2 相位設計...........................................................................32 3-5 評價函數(Merit function)...............................................................35 3-6 分析光斑點列圖(spot diagram) .....................................................35 3-7 ray fan..............................................................................................36 3-8 Huygens point spread function.....................................................37 3-9 調製傳遞函數比較.........................................................................39 3-10 Defocus..........................................................................................40 3-11 Longitudinal aberration................................................................41 3-12 Image amalysis............................................................................42 3-13 實驗驗證......................................................................................43 第 4 章 斜向入射庫克三透鏡.................................................................45 4-1 光線追跡圖.....................................................................................45 vii 4-2 斜向入射庫克三透鏡光斑點列圖.................................................47 4-3 斜向入射之調製傳遞函數............................................................49 第 5 章 結論.............................................................................................52 參考文獻...................................................................................................53

    [1] G. Y. Liu, W. L. Hsu, J. W. Pan, and C. M. Wang, “Refractive and MetaOptics Hybrid System,” Journal of Lightwave Technology, vol. 39, no. 21, pp.
    6880-6885, Nov 1, (2021).
    [2] C. Y. Fan, C. P. Lin, and G. D. J. Su, “Ultrawide-angle and high-efficiency
    metalens in hexagonal arrangement,” Scientific Reports, vol. 10, no. 1, Sep 24,
    (2020).
    [3] R. Sawant, D. Andren, R. J. Martins, S. Khadir, R. Verre, M. Kall, and P.
    Genevet, “Aberration-corrected large-scale hybrid metalenses,” Optica, vol. 8,
    no. 11, pp. 1405-1411, Nov 20, (2021).
    [4] W. T. Chen, A. Y. Zhu, J. Sisler, Y. W. Huang, K. M. A. Yousef, E. Lee, C.
    W. Qiu, and F. Capasso, “Broadband Achromatic Metasurface-Refractive
    Optics,” Nano Letters, vol. 18, no. 12, pp. 7801-7808, Dec, (2018).
    [5] B. Groever, W. T. Chen, and F. Capasso, “Meta-Lens Doublet in the Visible
    Region,” Nano Letters, vol. 17, no. 8, pp. 4902-4907, Aug, (2017).
    [6] Y. H. Guo, X. L. Ma, M. B. Pu, X. Li, Z. Y. Zhao, and X. G. Luo, “HighEfficiency and Wide-Angle Beam Steering Based on Catenary Optical Fields
    in Ultrathinmetalens,” Advanced Optical Materials, vol. 6, no. 19, Oct 4,
    (2018).
    [7] F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gahurro, and F.
    Capasso, “Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom
    Wavelengths Based on Plasmonic Metasurfaces,” Nano Letters, vol. 12, no. 9,
    pp. 4932-4936, Sep, (2012).
    [8] J. Sasian, “Formulae for the GEOmetrical propagation of a beam of light,”
    54
    Applied Optics, vol. 59, no. 22, pp. G24-G32, Aug 1, (2020).
    [9] R. G. Gonzalez-Acuna, H. A. Chaparro-Romo, and J. C. Gutierrez-Vega,
    “General formula to design a freefoRMSinglet free of spherical aberration and
    astigmatism: reply,” Applied Optics, vol. 59, no. 11, pp. 3425-3426, Apr 10,
    (2020).
    [10] H. Choi, and J. Ryu, “Design of Wide Angle and Large Aperture Optical
    System with Inner Focus for Compact System Camera Applications,” Applied
    Sciences-Basel, vol. 10, no. 1, Jan, (2020).
    [11] H. Choi, J. M. Ryu, and J. Y. Yeom, “Development of a Double-Gauss Lens
    Based Setup for Optoacoustic Applications,” Sensors, vol. 17, no. 3, Mar,
    (2017).
    [12] S. M. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu,
    J. Chen, B. B. Xu, C. H. Kuan, T. Li, S. N. Zhu, and D. P. Tsai, “Broadband
    achromatic optical metasurface devices,” Nature Communications, vol. 8, Aug
    4, (2017).
    [13] T. B. Andersen, “Accurate calculation of diffraction-limited encircled and
    ensquared energy,” Applied Optics, vol. 54, no. 25, pp. 7525-7533, Sep 1,
    (2015).
    [14] N. F. Yu, and F. Capasso, “Flat optics with designer metasurfaces,” Nature
    Materials, vol. 13, no. 2, pp. 139-150, Feb, (2014).
    [15] ZEMAX Product content, http://www.ZEMAX.com..(2005)
    [16] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F.
    Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and
    subwavelength resolution imaging,” Science, vol. 352, no. 6290, pp. 1190-
    1194, Jun 3, (2016).
    55
    [17] B. Groever, C. Roques-Carmes, S. J. Byrnes, and F. Capasso, “Substrate
    aberration and correction for meta-lens imaging: an analytical approach,”
    Applied Optics, vol. 57, no. 12, pp. 2973-2980, Apr 20, (2018).
    [18] M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and
    F. Capasso, “Achromatic Metalens over 60 nm Bandwidth in the Visible and
    Metalens with Reverse Chromatic Dispersion,” Nano Letters, vol. 17, no. 3,
    pp. 1819-1824, Mar, (2017).
    [19] F. Aieta, P. Genevet, M. Kats, and F. Capasso, “Aberrations of flat lenses and
    aplanatic metasurfaces,” Optics Express, vol. 21, no. 25, pp. 31530-31539,
    Dec 16, 2013.
    [20] J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company,
    2005)..
    [21] T. B. Andersen, “Accurate calculation of diffraction-limited encircled and
    ensquared energy,” Applied Optics, vol. 54, no. 25, pp. 7525-7533, Sep 1,
    (2015).
    [22] X. L. Ma, R. H. Jin, S. Liang, and H. F. Zheng, “Ideal shape of Fresnel lens
    for visible solar light concentration,” Optics Express, vol. 28, no. 12, pp.
    18141-18149, Jun 8, (2020).
    [23] C. Y. Huang, C. C. Chen, H. Y. Chou, and C. P. Chou, “Fabrication of Fresnel
    lens by glass molding technique,” Optical Review, vol. 20, no. 2, pp. 202-204,
    Mar, 2013.
    [24] Lee, G.-Y., Sung, J., & Lee, B.. “Metasurface optics for imaging applications. ”
    MRS Bulletin, 45(3), 202–209. (2020)
    [25] G.Hollows,N.James, “Introfuction to Modulation Transfer Function”, https://w
    ww.edmundoptics.com/knowledge-center/application-notes/optics/introductio
    56
    n-to-modulation-transfer-function/ (2010)
    [26] G.Hollows,N.James, “Distortion ”, https://www.edmundoptics.com.tw/knowle
    dge-center/application-notes/imaging/distortion/ (2010)

    QR CODE
    :::