跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王勛逸
Xun-Yi Wang
論文名稱: 基於發光二極體之超短脈衝雷射即時自相關器
Ultrafast Laser real-time Autocorrelator based on Light Emitting Diode
指導教授: 戴朝義
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 91
中文關鍵詞: 超短脈衝雷射自相關脈衝寬度脈衝整形
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  本論文利用共線干涉式自相關儀量測超短脈衝雷射的脈衝寬度,利用LED的雙光子吸收效應取代倍頻晶體作為光偵測器來記錄脈衝之自相關訊號;此外使用喇叭的來回低頻震動達成空間延遲,藉此實現可即時在示波器直接觀測之自相關訊號。實驗上亦利用稜鏡對引入已知色散來改變脈衝寬度,藉此驗證自相關儀的準確性。最後,為達成可同時進行脈衝量測與整形之儀器為目的,論文基於利用稜鏡對搭配液晶空間光調制器的架構進行色散補償模擬來達成在已知色散下調變液晶空間光調制器的像素灰階來重現傅立葉轉換極限之脈衝。


    In this study, we report a collinear interferometry based autocorrelator for measuring the pulse duration of an ultrashort laser. Based on two photon absorption generated current from the LED, autocorrelated signals can be detected. In order to achieve real-time measurement, we choose a loudspeaker to perform time delay scanning and the interferometric fringes can be observed on the oscilloscope straightaway. To verify the quality of the constructed autocorrelator we use a prism pair with known dispersion to alter the pulse duration, and the induced pulse broadening was in close agreement with the calculation. Finally, to achieve simultaneous pulse measurement and shaping, we simulate the capability of dispersion compensation basing on apparatus of a liquid crystal spatial light modulator in combination of a prism pair. We successfully find the way to allocate the grey level of pixels on the liquid crystal spatial light modulator to counteract the known dispersions that recovers distorted pulses into Fourier transform limited ones.

    中文摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 x 第一章 緒論 1 1-1前言 1 1-2 脈衝整形 3 1-2-1 被動式技術 4 1-2-2 主動式技術 6 1-3研究動機 7 1-4論文架構 8 第二章 研究方法 9 2-1 自相關理論 9 2-2 脈衝電場與波形 11 2-3 光學上的自相關 14 2-4 啁啾(Chirp) 19 2-5 脈衝的色散 24 2-5-1 群速度(Group Velocity) 24 2-5-2 群速度色散(Group Velocity Dispersion ,GVD) 25 2-5-3 角度色散(angular dispersion) 31 2-5-4 色散補償 33 2-5-5 色散對脈衝寬度影響 34 2-6 雙光子效應 36 2-7脈衝整形 38 2-7-1液晶空間光調制器 39 2-7-2液晶空間光調制器工作原理 41 第三章 實驗設計與架構 43 3-1 LED 43 3-2 脈衝雷射 44 3-3光電流(Photocurrrent) 46 3-4 自相關架設 47 3-5脈衝壓縮與拉長 50 3-6稜鏡對搭配空間光調制器色散補償模擬 52 第四章 實驗結果與討論 55 4-1 LED光譜 55 4-2 光電流 56 4-3 自相關訊號 58 4-4 脈衝寬度調變 66 4-5脈衝整形模擬 71 第五張 結論與未來展望 75 參考文獻 76

    [1] "Maiman Builds First Working Laser". Physics History: May 16, 1960. APS, News 19. May 2010.
    [2] S. E. Harris and R. Targ, "FM oscillation of the He-Ne laser," Appl. Phys. Lett. 5, 202 (1964).
    [3] R.L. Fork, B.I. Greene, C.V. Shank: Appl. Phys. Lett. 38, 671 (1981).
    [4] R. Trebino , D.J. Kane, Using phase retrieval to measure the intensity and phase of ultrashort pulses: Frequency Resolved Optical Gating ,Journal of the Optical Society of America B. 10(5):1101-1111(1993)
    [5] R. Trebino , D.J. Kane, Single shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using Frequency Resolved Optical Gating, Optics Letters. 18(10):803-825(1993)
    [6] C. Iaconis, I.A. Walmsley, Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses, Opt. Lett. 23:792-794(1998)
    [7] C. Iaconis, I.A. Walmsley, Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses, IEEE J. Quantum Electron. 35:501-509(1999)
    [8] A.M Weiner, Heritage, P. Kirschner, et al, High-resolution femtosecond pulse shaping, J.Opt,Soc,Am,B. 5,1563-1571(1998)
    [9] A.M Weiner, D.E. Leaird, J.S. Patel, et al, Programmable femtosecond pulse shaping by using of multi-element liquid-crystal phase modulator, Optics letters.15(6):326-328(1990)
    [10] A.M Weiner Femtosecond optical pulse shaping and processing, Prog.Quant.Electr.19:161-237(1995)

    [11] R.S. Judson, H. Rabitz, Teaching lasers to control molecules, Physical Review Letters. 68(10):1500-1503(1992)
    [12] F. Verluise, V. Laude, Z. Cheng, et al, Amplitude and Phase Control of Ultrashort Pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping, Optics Letters. 25(8):575-577(2000)
    [13] R. L. Fork, O. E. M, Artinze, J. P. Gordon, Negative dispersion using pairs of prisms, Opt. Let.9:180-182(1984)
    [14] E. B. Treacy, Optical pulse compression with diffraction grating, IEEE J. Quant. Electron,QE5(9):454-458(1969)
    [15] Froehly C, Colombeau B and Vampouille M 1983 Shaping and analysis of picosecond light pulses Prog. opt. 20 65–153
    [16] Xu, Lin, Nakagawa, N., Morita, R, Shigekawa, H, Yamashita M, Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper, IEEE J. Quant, Electron. QE36(8):893-899
    [17] D. T. Reid, M. Padgett, C. McGowan, W. E. Sleat, and W. Sibbett,
    “Light-emitting diodes as measurement devices for femtosecond laser
    pulses,” Optics Letters, vol. 22, pp. 233–235, February (1997)
    [18] F. A. Jenkins and H. E. White, Fundamentals of Optics, third ed. New
    York, NY: McGraw-Hill (1957)
    [19 ]E. F. Schubert, “Light emitting diodes and solid-state lighting.”
    http://www.lightemittingdiodes.org; accessed 5th April (2006)

    QR CODE
    :::