跳到主要內容

簡易檢索 / 詳目顯示

研究生: 韋子瀚
Tz-Han Wei
論文名稱: 藉由機械力化學法拓展酵素固定化於金屬有機骨架材料之相關研究
指導教授: 謝發坤
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 64
中文關鍵詞: 機械力化學法酵素固定化金屬有機骨架材料蔗糖分解酶葡萄糖苷酶半乳糖苷酶
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 酵素在各種工業應用中廣泛使用,然而酵素在催化過程中容易失活且催化完後較難與產物分離,因此對於如何提升酵素穩定性就更顯得重要,而在眾多方法中酵素固定化是其中一個最有前景的方法。本實驗室在2015年時,第一個發展出以原位創新水相合成法,在溫和中性室溫環境中以類沸石咪唑骨架材料ZIF-90包覆過氧化氫酶,利用金屬有機骨架材料的孔洞性質把底物送入其中進行催化,也可以防止大分子蛋白質水解酶的作用,為酵素提供一個保護層。緊接著在2017又發表文獻對這種酵素複合材料做更進一步的探討,發現MOFs可以為酵素提供空間限制的效果,在變性劑尿素的情況下也能防止酵素反折疊而保持催化活性,為了更好地理解MOF中酶包封的機制,有必要研究用各種酶和MOF進行包封。然而,大多數MOF需要相對苛刻的合成條件,例如有機溶劑和高溫,這會破壞酶活性。因此探索製造MOF生物複合材料的替代途徑,以確保酶的存活,是一必要途徑。
    如上所述,大多數酵素都是脆弱的,必須小心處理,以便它們能夠保持其功能,而機械化學合成方法提供了避免該問題的機會。首先,僅使用少量的溶劑可以最大限度地減少刺激性化學藥品對生物活性的潛在破壞作用;其次,快速反應時間使酵素暴露於反應條件最小化,這可以限制酶活性的損害,即使在對於在包封期間需要較少的原位合成也是如此,為此,我們對機械化學酶封裝進行了一項新的概念驗證研究。據我們所知,這項工作代表了使用此種方法的第一個例子,並且以此應用於兩種具有不同晶體結構的穩健MOF:UiO-66-NH2和ZIF-8。作為初始情況,β-葡萄糖苷酶分子成功地嵌入UiO-66-NH2和ZIF-8,並為了證明機械化學酶封裝策略的廣泛用途,我們進一步將研究擴展到比BGL更大和更小的酵素。


    In spite of widely used in diverse industrial applications, enzymes suffer from stability and recyclability problems owing largely to their relatively easy deactivation and the difficulty of post-catalytic separation, respectively. Several techniques have been developed to enhance the robustness of enzymes and to provide a heterogeneous environment for easy separation. However, the immobilization of the enzyme on a solid support represents a particularly promising method. In our previous report in 2015, we proposed a highly efficient way of encapsulating the enzyme of catalase in Zeolitic Imidazolate Framwork-90 (ZIF-90) under aqueous named de novo approach which is capable of protecting the embedded enzyme from protease and maintaining its biological activity. Lately, our group published a report in 2017 further showed that MOFs can provide spatial confinement to enzymes so that enzymes could still have functionalities even with the participation of denaturing agents. To investigate and gain more knowledge in the area of confinement, we need more examples composed by vary MOFs with different enzymes. Most of the MOFs, however, require relatively harsh synthetic conditions such as organic solvents and high temperatures along with long reaction time. Comparing synthetic conditions for demanding survival to most enzymes, it is thus important to explore an alternative route to fabricate MOF biocomposites.
    As mentioned above, enzymes usually are fragile and need to be handled with attention. In this context, a mechanochemical method provide certain advantages for this regard. First, the use of only a trace amount of solvent and precursors that could minimize the potential detrimental effects on biological activity. Additionally, a rapid reaction time allows those enzymes to expose to external surrounding with less time in order to yield enzymes more opportunity to survive and present good biological activity. To this end, we have performed a new proof-of-concept study using a mechanochemical method to encapsulate enzymes in MOFs. This is the first example of a mechanochemical biomineralization method using trace amounts of solvents as our knowledge. We applied our approach to two robust MOFs with different crystal structures: zeolitic imidazolate framework-8 (ZIF-8) and University of Oslo-66 with amino moieties (UiO-66-NH2). β-glucosidase (BGL) molecules were successfully embedded in ZIF-8 and UiO-66-NH2 to demonstrate the broad utility of the mechanochemical enzyme encapsulation strategy. To demonstrate the broad utility of the mechanochemical enzyme encapsulation strategy, we further extended our study to enzymes both larger and smaller than BGL.

    中文摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1-1 金屬有機骨架材料 1 1-1-1 簡介 1 1-1-2 鋯金屬之有機金屬骨架材料 3 1-1-3 UiO-66 之文獻回顧 4 1-1-4 類沸石咪唑骨架材料-8 5 1-2 酵素與酵素固定化 7 1-2-1 簡介 7 1-2-2 酵素固定化於MOFs的發展 8 1-3 研究動機以及目的 9 第二章 實驗部分 10 2-1 實驗藥品 10 2-2 實驗儀器 13 2-3 實驗儀器之原理 14 2-3-1 中量快速球磨機 (Ball Mill Instrument) 14 2-3-2 X光粉末繞射儀 (X-ray Powder Diffractometer) 14 2-3-3 場發射掃描式電子顯微鏡 15 2-3-4 等溫氮氣吸/脫附儀 16 2-3-5 十二烷基硫酸鈉聚丙烯醯胺膠體電泳 17 2-4 酵素 18 2-4-1 蔗糖分解酶 (Invertase) 19 2-4-2 β-葡萄糖苷酶 (β-glucosidase) 19 2-4-3 β-半乳糖苷酶 (β-galactosidase) 20 2-4-4 過氧化氫酶 (Catalase) 20 2-4-5 蛋白酶 (Protease) 20 2-5 實驗步驟 21 2-5-1 機械力化學法–類沸石咪唑骨架材料-8之合成 21 2-5-2 機械力化學法–類沸石咪唑骨架材料-8包覆酵素之合成 21 2-5-3 機械力化學法–氨基化UiO-66 (UiO-66-NH2)之合成 22 2-5-4 機械力化學法–氨基化UiO-66包覆酵素之合成 22 2-5-5 原位創新合成法 (de novo approach)–類沸石咪唑骨架材料-8包覆過氧化氫酶之合成 22 2-5-6 偵測蛋白質濃度 (Bradford assay) 23 2-5-7 偵測β-葡萄糖苷酶活性之方法 24 2-5-8 偵測β-半乳糖苷酶活性之方法 25 2-5-9 偵測蔗糖分解酶活性之方法 25 2-5-10 偵測過氧化氫酶之活性 26 2-5-11 蛋白酶下的活性測試 27 2-5-12 氨基化對苯二甲酸對水及乙醇的溶解度測試 28 2-5-13 十二烷基硫酸鈉聚丙烯醯胺膠體電泳與MOF酵素複合材料 28 第三章 結果與討論 30 3-1 UiO-66-NH2以及UiO-66-NH2包覆各類酵素之材料鑑定 30 3-1-1 粉末X光繞射鑑定結果 30 3-1-2 掃描式電子顯微鏡 31 3-1-3 熱重分析儀鑑定結果 32 3-1-4 氮氣吸脫附儀 33 3-1-5 十二烷基硫酸鈉聚丙烯醯胺膠體電泳 34 3-2 ZIF-8包覆各類酵素之相關鑑定 36 3-2-1 粉末X光繞射鑑定結果 36 3-2-2 掃描式電子顯微鏡 36 3-2-3 十二烷基硫酸鈉聚丙烯醯胺膠體電泳 37 3-3 酵素活性探討於UiO-66-NH2與ZIF-8酵素複合材料之相關結果 38 第四章 結論以及未來展望 44 第五章 參考文獻 45

    1. Yaghi OM, Li G, Li H. Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703 (1995).
    2. Yaghi OM, O'Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials. Nature 423, 705 (2003).
    3. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The Chemistry and Applications of Metal-Organic Frameworks. Science 341, 1230444 (2013).
    4. Stock N, Biswas S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 112, 933-969 (2012).
    5. Huo J, Brightwell M, El Hankari S, Garai A, Bradshaw D. A versatile, industrially relevant, aqueous room temperature synthesis of HKUST-1 with high space-time yield. J. Mater. Chem. A 1, 15220-15223 (2013).
    6. Rabenau A. The Role of Hydrothermal Synthesis in Preparative Chemistry. Angew. Chem., Int. Ed. Engl. 24, 1026-1040 (1985).
    7. Klinowski J, Almeida Paz FA, Silva P, Rocha J. Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Trans. 40, 321-330 (2011).
    8. Pichon A, Lazuen-Garay A, James SL. Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 8, 211-214 (2006).
    9. Qiu L-G, Li Z-Q, Wu Y, Wang W, Xu T, Jiang X. Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chem. Commun., 3642-3644 (2008).
    10. Ameloot R, Stappers L, Fransaer J, Alaerts L, Sels BF, De Vos DE. Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chem. Mater. 21, 2580-2582 (2009).
    11. Seetharaj R, Vandana PV, Arya P, Mathew S. Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arabian J. Chem., (2016).
    12. Rosi NL, et al. Hydrogen Storage in Microporous Metal-Organic Frameworks. Science 300, 1127-1129 (2003).
    13. Li J-R, Kuppler RJ, Zhou H-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477-1504 (2009).
    14. Yoon M, Srirambalaji R, Kim K. Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chem. Rev. 112, 1196-1231 (2012).
    15. Bétard A, Fischer RA. Metal–Organic Framework Thin Films: From Fundamentals to Applications. Chem. Rev. 112, 1055-1083 (2012).
    16. Zhuang J, Kuo C-H, Chou L-Y, Liu D-Y, Weerapana E, Tsung C-K. Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation. ACS Nano 8, 2812-2819 (2014).
    17. Campbell MG, Liu SF, Swager TM, Dincă M. Chemiresistive Sensor Arrays from Conductive 2D Metal–Organic Frameworks. J. Am. Chem. Soc. 137, 13780-13783 (2015).
    18. Horcajada P, et al. Metal–Organic Frameworks in Biomedicine. Chem. Rev. 112, 1232-1268 (2012).
    19. Shimizu GKH, Taylor JM, Kim S. Proton Conduction with Metal-Organic Frameworks. Science 341, 354-355 (2013).
    20. Liang K, et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 6, 7240 (2015).
    21. Choi KM, Jeong HM, Park JH, Zhang Y-B, Kang JK, Yaghi OM. Supercapacitors of Nanocrystalline Metal–Organic Frameworks. ACS Nano 8, 7451-7457 (2014).
    22. Bai Y, Dou Y, Xie L-H, Rutledge W, Li J-R, Zhou H-C. Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev. 45, 2327-2367 (2016).
    23. Cavka JH, et al. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 130, 13850-13851 (2008).
    24. Deria P, et al. Perfluoroalkane Functionalization of NU-1000 via Solvent-Assisted Ligand Incorporation: Synthesis and CO2 Adsorption Studies. J. Am. Chem. Soc. 135, 16801-16804 (2013).
    25. Liu X, Demir NK, Wu Z, Li K. Highly Water-Stable Zirconium Metal–Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination. J. Am. Chem. Soc. 137, 6999-7002 (2015).
    26. Kandiah M, et al. Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chem. Mater. 22, 6632-6640 (2010).
    27. Howarth AJ, et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016).
    28. Hu Z, Peng Y, Kang Z, Qian Y, Zhao D. A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-Type MOFs. Inorg. Chem. 54, 4862-4868 (2015).
    29. Ragon F, Chevreau H, Devic T, Serre C, Horcajada P. Impact of the Nature of the Organic Spacer on the Crystallization Kinetics of UiO-66(Zr)-Type MOFs. Chem. Eur. J. 21, 7135-7143 (2015).
    30. Reinsch H, Waitschat S, Chavan SM, Lillerud KP, Stock N. A Facile “Green” Route for Scalable Batch Production and Continuous Synthesis of Zirconium MOFs. Eur. J. Inorg. Chem. 2016, 4490-4498 (2016).
    31. Abánades Lázaro I, Haddad S, Sacca S, Orellana-Tavra C, Fairen-Jimenez D, Forgan RS. Selective Surface PEGylation of UiO-66 Nanoparticles for Enhanced Stability, Cell Uptake, and pH-Responsive Drug Delivery. Chem 2, 561-578 (2017).
    32. Orellana-Tavra C, et al. Amorphous metal–organic frameworks for drug delivery. Chem. Commun. 51, 13878-13881 (2015).
    33. Leus K, et al. Au@UiO-66: a base free oxidation catalyst. RSC Adv. 5, 22334-22342 (2015).
    34. Li Z, Rayder TM, Luo L, Byers JA, Tsung C-K. Aperture-Opening Encapsulation of a Transition Metal Catalyst in a Metal–Organic Framework for CO2 Hydrogenation. J. Am. Chem. Soc. 140, 8082-8085 (2018).
    35. Shearer GC, et al. Tuned to Perfection: Ironing Out the Defects in Metal–Organic Framework UiO-66. Chem. Mater. 26, 4068-4071 (2014).
    36. Trickett CA, Gagnon KJ, Lee S, Gándara F, Bürgi H-B, Yaghi OM. Definitive Molecular Level Characterization of Defects in UiO-66 Crystals. Angew. Chem., Int. Ed. 54, 11162-11167 (2015).
    37. Park KS, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U.S.A. 103, 10186-10191 (2006).
    38. Huang X-C, Lin Y-Y, Zhang J-P, Chen X-M. Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angew. Chem., Int. Ed. 45, 1557-1559 (2006).
    39. Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Acc. Chem. Res. 43, 58-67 (2010).
    40. Kida K, Okita M, Fujita K, Tanaka S, Miyake Y. Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm 15, 1794-1801 (2013).
    41. Lu G, Hupp JT. Metal−Organic Frameworks as Sensors: A ZIF-8 Based Fabry−Pérot Device as a Selective Sensor for Chemical Vapors and Gases. J. Am. Chem. Soc. 132, 7832-7833 (2010).
    42. Katsenis AD, et al. In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework. Nat. Commun. 6, 6662 (2015).
    43. Zheng H, et al. One-pot Synthesis of Metal–Organic Frameworks with Encapsulated Target Molecules and Their Applications for Controlled Drug Delivery. J. Am. Chem. Soc. 138, 962-968 (2016).
    44. Koeller KM, Wong C-H. Enzymes for chemical synthesis. Nature 409, 232 (2001).
    45. Liu D-M, Chen J, Shi Y-P. Advances on methods and easy separated support materials for enzymes immobilization. TrAC, Trends Anal. Chem. 102, 332-342 (2018).
    46. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B. Industrial biocatalysis today and tomorrow. Nature 409, 258 (2001).
    47. Datta S, Christena LR, Rajaram YRS. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3, 1-9 (2013).
    48. Doonan C, Riccò R, Liang K, Bradshaw D, Falcaro P. Metal–Organic Frameworks at the Biointerface: Synthetic Strategies and Applications. Acc. Chem. Res. 50, 1423-1432 (2017).
    49. Lian X, et al. Enzyme–MOF (metal–organic framework) composites. Chem. Soc. Rev. 46, 3386-3401 (2017).
    50. Majewski MB, Howarth AJ, Li P, Wasielewski MR, Hupp JT, Farha OK. Enzyme encapsulation in metal–organic frameworks for applications in catalysis. CrystEngComm 19, 4082-4091 (2017).
    51. Shieh F-K, et al. Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. J. Am. Chem. Soc. 137, 4276-4279 (2015).
    52. Liao F-S, et al. Shielding against Unfolding by Embedding Enzymes in Metal–Organic Frameworks via a de Novo Approach. J. Am. Chem. Soc. 139, 6530-6533 (2017).
    53. Gascón V, Castro-Miguel E, Díaz-García M, Blanco RM, Sanchez-Sanchez M. In situ and post-synthesis immobilization of enzymes on nanocrystalline MOF platforms to yield active biocatalysts. J. Chem. Technol. Biotechnol. 92, 2583-2593 (2017).
    54. Gascón V, Carucci C, Jiménez MB, Blanco RM, Sánchez-Sánchez M, Magner E. Rapid In Situ Immobilization of Enzymes in Metal–Organic Framework Supports under Mild Conditions. ChemCatChem 9, 1182-1186 (2017).
    55. Calka A, Wexler D. Mechanical milling assisted by electrical discharge. Nature 419, 147 (2002).
    56. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 (1976).
    57. Jatinder K, Bhupinder SC, Badhan AK, Ghatora SK, Harvinder SS. Purification and characterization of β-glucosidase from Melanocarpus sp. MTCC 3922. Electron. J. Biotechnol. 10, 260-270 (2007).
    58. Guven RG, Kaplan A, Guven K, Matpan F, Dogru M. Effects of various inhibitors on β-galactosidase purified from the thermoacidophilic Alicyclobacillus acidocaldarius subsp. Rittmannii isolated from Antarctica. Biotechnol. Bioprocess Eng. 16, 114-119 (2011).
    59. Lever M. A new reaction for colorimetric determination of carbohydrates. Anal. Biochem. 47, 273-279 (1972).
    60. Jiang Z-Y, Woollard ACS, Wolff SP. Hydrogen peroxide production during experimental protein glycation. FEBS Lett. 268, 69-71 (1990).
    61. Ou P, Wolff SP. A discontinuous method for catalase determination at ‘near physiological’ concentrations of H2O2 and its application to the study of H2O2 fluxes within cells. J. Biochem. Biophys. Methods 31, 59-67 (1996).
    62. Chiari M, Gelain A, Riva S, Tura D. Analysis of mandelonitrile lyase and β-glucosidase from sweet almonds by combined electrophoretic techniques. Electrophoresis 18, 2050-2054 (1997).
    63. Maksimainen MM, Lampio A, Mertanen M, Turunen O, Rouvinen J. The crystal structure of acidic β-galactosidase from Aspergillus oryzae. Int. J. Biol. Macromol. 60, 109-115 (2013).
    64. Goldstein A, Lampen JO. Beta-D-fructofuranoside fructohydrolase from yeast. Methods Enzymol 42, 504-511 (1975).
    65. Timerman AP, Fenrick AM, Zamis TM. The Isolation of Invertase from Baker's Yeast: A Four-Part Exercise in Protein Purification and Characterization. J. Chem. Educ. 86, 379 (2009).

    QR CODE
    :::