跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝肇文
Chao-Wen Hsieh
論文名稱: 在2D及3D環境培養人類脂肪幹細胞其多能性及分化能力
Pluripotency and Differentiation Ability of Human Adipose-Derived Stem Cells Culture in 2-D and 3-D culture
指導教授: 樋口亞紺
Akon Higuchi
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 83
中文關鍵詞: 人類脂肪幹細胞2D培養3D培養多能性分化能力
外文關鍵詞: human Adipose-derived Stem cells, 2D cultivation system, 3D cultivation system, Pluripotency, Differentiation Ability
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 充間質幹細胞於再生醫學領域中被普遍認為是十分具有潛力的細胞來源相較於胚胎幹細胞以及誘導多能性幹細胞。這是因為充間質幹細胞不會如胚胎幹細胞產生道德方面的疑慮以及誘導多能性幹細胞在體內會有產生腫瘤發生的可能。但應用上的問題則在於充間質幹細胞會有無法長久培養及多能性遠遠低於胚胎幹細胞和誘導多能性幹細胞。
    在之前的研究發現,人類脂肪幹細胞在TCPS培養盤上,其多能性基因 (Oct4,Sox2,Nanog)會急速的下降。但相較於含有許多細胞自脂肪中所萃取出的SVF溶液以及在培養液中懸浮培養圓球體符合幹細胞在胚胎中最原始的型態,培養在TCPS培養盤上面的多能性則遠遠不足。
    在此研究中,我們在TCPS培養盤以及Ultra low attachment培養盤上面培養人類脂肪幹細胞。幹細胞會貼附在TCPS培養盤上並開始生長於表面,稱之為2D培養。則細胞培養在Ultra low attachment培養盤中,人類脂肪幹細胞會懸浮於培養液中所以稱為3D培養。在一段時間的培養後,我們會因為其培養環境不同去比較其多能性以及分化人類脂肪幹細胞為成骨細胞,軟骨細胞去比較培養環境的不同其分化能力。並透過免疫螢光染色法以及多能性基因的檢測去比較兩種培養方式的多能性。
    結果顯示在懸浮培養中,其多能性都會優於培養在TCPS培養盤上的幹細胞。甚至於,培養在較低多能性的TCPS培養盤上後,幹細胞接著被培養在懸浮培養環境中,我們發現其多能性會回復以及維持較高多能性。分化能力亦然,不論是成骨分化或者軟骨分化,懸浮培養出的幹細胞,其分化能力都優於貼附培養後的幹細胞。


    Human adult stem cells, such as human adipose-derived stem cells, are considered to be an attractive source of stem cells than human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). This is because human adult stem cells do not generate the ethical concerns that accompany in hESCs. Although human adipose-derived stem cells (hADSCs) are promising for use in regenerative medicine, their lower expansion ability (aging problem) due to the lower pluripotency of hADSCs compared with hESCs and hiPSCs is a critical issue.
    It’s found that the pluripotency gene expression of Oct4, Sox2, and Nanog in hADSCs after cultivation on TCPS dramatically decreased compared to those in the cells in stromal vascular fraction (SVF) as well as the cells in 3-D culture. There are high pluripotent stem cells in SVFs and 3-D culture, although SVF has more heterogeneous population compared to hADSCs cultured on tissue culture polystyrene (TCPS) dishes.
    It’s evaluated whether hADSCs can be explained by “Stochastic model” or “Elite model” by hADSCs culture in 2-D culture and 3-D culture sequentially. Precisely, we evaluated the difference of gene expression of the cells when hADSCs were cultured in the 2-D condition (TCPS) and in 3-D condition (ultra low attachment dish) sequentially. It is found that the pluripotent gene expression of hADSCs (Oct4, Sox2 and Nanog) in suspension (3-D culture) is higher than that on TCPS (2-D culture). Especially, low pluripotent gene expression of hADSCs cultured on TCPS is changed to be higher pluripotent gene expression after hADSCs are shifted in 3-D culture

    Abstract I 摘要 II Index of figures VI Index of Tables VIII Chapter 1 Introduction 1 1.1 Stem Cells 1 1-1-1 Embryonic Stem Cells (ESCs) 2 1-1-2 Induced pluripotent stem cells (iPSCs) 2 1-1-3 Mesenchymal stem cells (MSCs) 3 1-2 Human adipose-derived stem cells (hADSCs) 4 1-2-1 Isolation of human adipose-derived stem cells 5 1-2-2 Membrane filtration method to purify hADSCs. 6 1-2-3 Membrane migration method to culture hADSCS 6 1-2-4 Differentiation capacity of human adipose-derived stem cell for clinical application 7 1-3 Three dimensional spheroid cell culture of human ADSCs. 9 1-3-1 Preparation for Spheroid Formation 10 1-4 Characterization of human ADSCs 13 1-4-1. Flow-cytomertry 13 1-4-2. Quantitative real time polymerase chain reaction 14 1-4-3. Immunofluorescence staining 16 Chapter 2 Materials and Methods 17 2-1 Materials 17 2-1-1 Sources for adipose tissue 17 2-1-2 Commercial culture dishes 17 2-1-3 Culture medium/Differentiation induction medium 17 2-1-4 Phosphate buffer saline solution (PBS) 17 2-1-5 Digestion solution 17 2-1-6 ACK lysing solution 18 2-1-7 Flow cytometry 18 2-1-8 Immunostaining 18 2-1-9 RNA extraction kit 18 2-1-10 Reverse transcription kit 18 2-1-11 Real-time polymerization chain reaction 19 2-1-12 qRT-PCR probe 19 2-1-13 Alkaline phosphate assay 19 2-1-14 Alizarin Red S staining 19 2-1-15 von Kossa staining 19 2-1-16 Alcian blue staining 19 2-2 Experiment method 20 2-2-1Preparation of culture medium 20 2-2-2 Isolation and culture of adipose-derived stem cells 20 2-2-3 Culture and passage of hADSCs 22 2-2-4 Cell density measurement 23 2-2-5 Isolation of total RNA 23 2-2-6 Reverse transcription of mRNA into DNA 24 2-2-7 Quantitative real time polymerase chain reaction 25 2-2-8 Differentiation of adipose-derived stem cells 25 2-2-9 Alkaline phosphatase activity 26 2-2-10 Alizarin Red S staining 26 2-2-11 von Kossa staining 27 2-2-12 Alcian blue staining 27 2-2-13 Quantitative analysis of differentiation 28 Chapter 3 Results and Discussion 29 3-1 Cultivation of hADSCs in 2D and 3D culture 29 3-2 Pluripotency analysis of hADSCs cultured in 2-D and 3-D culture 32 3-3. Differentiation ability of hADSCs into osteogenic differentiation, which were cultured in 2-D and 3-D culture in advance 40 3-4. Differentiation ability of hADSCs into chondrogenic differentiation, which were cultured in 2-D and 3-D culture in advance 46 Chapter 4 Conclusion 48 References 50 Appendix data 58

    1. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-676.
    2. Dyce, P.W., et al., Stem cells with multilineage potential derived from porcine skin. Biochemical and Biophysical Research Communications, 2004. 316(3): p. 651-658.
    3. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-1147.
    4. Cowan, C.A., et al., Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science, 2005. 309(5739): p. 1369-1373.
    5. Maruyama, M., et al., Differential roles for Sox15 and Sox2 in transcriptional control in mouse embryonic stem cells. Journal of Biological Chemistry, 2005. 280(26): p. 24371-24379.
    6. Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154-6.
    7. Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 1981. 78(12): p. 7634-7638.
    8. Thomson, J.A., et al., Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A, 1995. 92(17): p. 7844-8.
    9. Avilion, A.A., et al., Multipotent cell lineages in early mouse development depend on SOX2 function. Genes & Development, 2003. 17(1): p. 126-140.
    10. Nichols, J., et al., Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 1998. 95(3): p. 379-391.
    11. Chambers, I., et al., Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 2003. 113(5): p. 643-655.
    12. Cartwright, P., et al., LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development, 2005. 132(5): p. 885-896.
    13. Locke, M., J. Windsor, and P.R. Dunbar, Human adipose-derived stem cells: isolation, characterization and applications in surgery. Anz Journal of Surgery, 2009. 79(4): p. 235-244.
    14. Kern, S., et al., Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 2006. 24(5): p. 1294-1301.
    15. Prockop, D.J., Marrow stromal cells as stem cells for continual renewal of nonhematopoietic tissues and as potential vectors for gene therapy. Journal of Cellular Biochemistry, 1998: p. 284-285.
    16. Meirelles, L.D. and N.B. Nardi, Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. British Journal of Haematology, 2003. 123(4): p. 702-711.
    17. Sethe, S., A. Scutt, and A. Stolzing, Aging of mesenchymal stem cells. Ageing Research Reviews, 2006. 5(1): p. 91-116.
    18. Giordano, A., U. Galderisi, and I.R. Marino, From the laboratory bench to the patients bedside: An update on clinical trials with mesenchymal stem cells. Journal of Cellular Physiology, 2007. 211(1): p. 27-35.
    19. Mullersieburg, C.E. and E. Deryugina, THE STROMAL CELLS GUIDE TO THE STEM-CELL UNIVERSE. Stem Cells, 1995. 13(5): p. 477-486.
    20. Zhang, J.W., et al., Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 2003. 425(6960): p. 836-841.
    21. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 2002. 13(12): p. 4279-4295.
    22. Zuk, P.A., et al., Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Engineering, 2001. 7(2): p. 211-228.
    23. Rodriguez-Lozano, F.J., et al., Mesenchymal stem cells derived from dental tissues. Int Endod J, 2011. 44(9): p. 800-6.
    24. Pierdomenico, L., et al., Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation, 2005. 80(6): p. 836-42.
    25. Kerkis, I. and A.I. Caplan, Stem cells in dental pulp of deciduous teeth. Tissue Eng Part B Rev, 2012. 18(2): p. 129-38.
    26. Erices, A., P. Conget, and J.J. Minguell, Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol, 2000. 109(1): p. 235-42.
    27. Covas, D.T., et al., Isolation and culture of umbilical vein mesenchymal stem cells. Braz J Med Biol Res, 2003. 36(9): p. 1179-83.
    28. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-7.
    29. Bianco, P. and P. Gehron Robey, Marrow stromal stem cells. Journal of Clinical Investigation, 2000. 105(12): p. 1663-1668.
    30. Jori, F.P., et al., Molecular pathways involved in neural in vitro differentiation of marrow stromal stem cells. J Cell Biochem, 2005. 94(4): p. 645-55.
    31. Grigoriadis, A.E., J.N. Heersche, and J.E. Aubin, Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol, 1988. 106(6): p. 2139-51.
    32. Cheng, S.L., et al., Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology, 1994. 134(1): p. 277-86.
    33. Loffler, G. and H. Hauner, Adipose tissue development: the role of precursor cells and adipogenic factors. Part II: The regulation of the adipogenic conversion by hormones and serum factors. Klin Wochenschr, 1987. 65(17): p. 812-7.
    34. Hauner, H., P. Schmid, and E.F. Pfeiffer, Glucocorticoids and insulin promote the differentiation of human adipocyte precursor cells into fat cells. J Clin Endocrinol Metab, 1987. 64(4): p. 832-5.
    35. Young, C., et al., A porcine model for adipose tissue-derived endothelial cell transplantation. Cell Transplant, 1992. 1(4): p. 293-8.
    36. Gronthos, S., et al., Surface protein characterization of human adipose tissue-derived stromal cells. Journal of Cellular Physiology, 2001. 189(1): p. 54-63.
    37. Mineda, K., et al., Therapeutic Potential of Human Adipose-Derived Stem/Stromal Cell Microspheroids Prepared by Three-Dimensional Culture in Non-Cross-Linked Hyaluronic Acid Gel. Stem Cells Translational Medicine, 2015. 4(12): p. 1511-1522.
    38. Yu, J., et al., Stemness and transdifferentiation of adipose-derived stem cells using l-ascorbic acid 2-phosphate-induced cell sheet formation. Biomaterials, 2014. 35(11): p. 3516-3526.
    39. Aust, L., et al., Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy, 2004. 6(1): p. 7-14.
    40. Boquest, A.C., et al., Isolation and transcription profiling of purified uncultured human stromal stem cells: Alteration of gene expression after in vitro cell culture. Molecular Biology of the Cell, 2005. 16(3): p. 1131-1141.
    41. Chen, D.C., et al., Purification of human adipose-derived stem cells from fat tissues using PLGA/silk screen hybrid membranes. Biomaterials, 2014. 35(14): p. 4278-4287.
    42. Mitchell, J.B., et al., Immunophenotype of human adipose-derived cells: Temporal changes in stromal-associated and stem cell-associated markers. Stem Cells, 2006. 24(2): p. 376-385.
    43. Higuchi, A., et al., Differentiation ability of adipose-derived stem cells separated from adipose tissue by a membrane filtration method. Journal of Membrane Science, 2011. 366(1-2): p. 286-294.
    44. Wu, C.H., et al., The isolation and differentiation of human adipose-derived stem cells using membrane filtration. Biomaterials, 2012. 33(33): p. 8228-8239.
    45. Higuchi, A., et al., Cell separation between mesenchymal progenitor cells through porous polymeric membranes. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2005. 74B(1): p. 511-519.
    46. Higuchi, A., et al., Polymeric Materials for Ex vivo Expansion of Hematopoietic Progenitor and Stem Cells. Polymer Reviews, 2009. 49(3): p. 181-200.
    47. Park, H. and K. Na, Conjugation of the photosensitizer Chlorin e6 to pluronic F127 for enhanced cellular internalization for photodynamic therapy. Biomaterials, 2013. 34(28): p. 6992-7000.
    48. Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiating cells. Nature, 2007. 445(7123): p. 111-115.
    49. Chung, M.T., et al., CD90 (Thy-1)-Positive Selection Enhances Osteogenic Capacity of Human Adipose-Derived Stromal Cells. Tissue Engineering Part A, 2013. 19(7-8): p. 989-997.
    50. Schriebl, K., et al., Selective Removal of Undifferentiated Human Embryonic Stem Cells Using Magnetic Activated Cell Sorting Followed by a Cytotoxic Antibody. Tissue Engineering Part A, 2012. 18(9-10): p. 899-909.
    51. Liu, H.L., et al., Synthesis of streptavidin-FITC-conjugated core-shell Fe3O4-Au nanocrystals and their application for the purification of CD4(+) lymphocytes. Biomaterials, 2008. 29(29): p. 4003-4011.
    52. Chen, L.Y., et al., Effect of the surface density of nanosegments immobilized on culture dishes on ex vivo expansion of hematopoietic stem and progenitor cells from umbilical cord blood. Acta Biomaterialia, 2012. 8(5): p. 1749-1758.
    53. Lin, H.R., et al., Purification and differentiation of human adipose-derived stem cells by membrane filtration and membrane migration methods. Scientific Reports, 2017. 7.
    54. Higuchi, A., et al., A hybrid-membrane migration method to isolate high-purity adipose-derived stem cells from fat tissues. Scientific Reports, 2015. 5: p. 11.
    55. Di Rocco, G., et al., Myogenic potential of adipose-tissue-derived cells. Journal of Cell Science, 2006. 119(14): p. 2945-2952.
    56. Wickham, M.Q., et al., Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clinical Orthopaedics and Related Research, 2003(412): p. 196-212.
    57. Gimble, J.M. and F. Guilak, Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy, 2003. 5(5): p. 362-369.
    58. Gimble, J.M. and F. Guilak, Differentiation potential of adipose derived adult stem (ADAS) cells. Current Topics in Developmental Biology, Vol 58, 2003. 58: p. 137-160.
    59. Tholpady, S.S., et al., Adipose Tissue: Stem Cells and Beyond. Clinics in Plastic Surgery, 2006. 33(1): p. 55-62.
    60. Schaffler, A. and C. Buchler, Concise review: Adipose tissue-derived stromal cells - Basic and clinical implications for novel cell-based therapies. Stem Cells, 2007. 25(4): p. 818-827.
    61. Brey, E.M. and C.W. Patrick, Jr., Tissue engineering applied to reconstructive surgery. IEEE Eng Med Biol Mag, 2000. 19(5): p. 122-5.
    62. Stosich, M.S. and J.J. Mao, Adipose Tissue Engineering from Human Adult Stem Cells: Clinical Implications in Plastic and Reconstructive Surgery. Plastic and reconstructive surgery, 2007. 119(1): p. 71-85.
    63. Shi, Y.Y., et al., The osteogenic potential of adipose-derived mesenchymal cells is maintained with aging. Plastic and Reconstructive Surgery, 2005. 116(6): p. 1686-1696.
    64. Im, G.I., Y.W. Shin, and K.B. Lee, Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis and Cartilage, 2005. 13(10): p. 845-853.
    65. Kim, D.H., et al., Effect of partial hepatectomy on in vivo engraftment after intravenous administration of human adipose tissue stromal cells in mouse. Microsurgery, 2003. 23(5): p. 424-31.
    66. Pfeffer, M.A. and E. Braunwald, VENTRICULAR REMODELING AFTER MYOCARDIAL-INFARCTION - EXPERIMENTAL-OBSERVATIONS AND CLINICAL IMPLICATIONS. Circulation, 1990. 81(4): p. 1161-1172.
    67. Orlic, D., J.M. Hill, and A.E. Arai, Stem cells for myocardial regeneration. Circulation Research, 2002. 91(12): p. 1092-1102.
    68. Huang, G.S., et al., Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials, 2011. 32(29): p. 6929-6945.
    69. Cheng, N.C., et al., Short-Term Spheroid Formation Enhances the Regenerative Capacity of Adipose-Derived Stem Cells by Promoting Sternness, Angiogenesis, and Chemotaxis. Stem Cells Translational Medicine, 2013. 2(8): p. 584-594.
    70. Dertinger, H. and C. Lucke Huhle, A comparative study of post-irradiation growth kinetics of spheroids and monolayers. Int J Radiat Biol Relat Stud Phys Chem Med, 1975. 28(3): p. 255-65.
    71. Durand, R.E., Cell cycle kinetics in an in vitro tumor model. Cell Tissue Kinet, 1976. 9(5): p. 403-12.
    72. Haji-Karim, M. and J. Carlsson, Proliferation and viability in cellular spheroids of human origin. Cancer Res, 1978. 38(5): p. 1457-64.
    73. Yuhas, J.M. and A.P. Li, Growth fraction as the major determinant of multicellular tumor spheroid growth rates. Cancer Res, 1978. 38(6): p. 1528-32.
    74. Carlsson, J., et al., The influence of oxygen on viability and proliferation in cellular spheroids. Int J Radiat Oncol Biol Phys, 1979. 5(11-12): p. 2011-20.
    75. Cesarz, Z. and K. Tamama, Spheroid Culture of Mesenchymal Stem Cells. Stem Cells International, 2016: p. 11.
    76. Grinnell, F. and M.K. Feld, Adsorption characteristics of plasma fibronectin in relationship to biological activity. J Biomed Mater Res, 1981. 15(3): p. 363-81.
    77. Ruoslahti, E. and M.D. Pierschbacher, New perspectives in cell adhesion: RGD and integrins. Science, 1987. 238(4826): p. 491-7.
    78. Cheng, N.C., S. Wang, and T.H. Young, The influence of spheroid formation of human adipose-derived stem cells on chitosan films on sternness and differentiation capabilities. Biomaterials, 2012. 33(6): p. 1748-1758.
    79. Frith, J.E., B. Thomson, and P.G. Genever, Dynamic Three-Dimensional Culture Methods Enhance Mesenchymal Stem Cell Properties and Increase Therapeutic Potential. Tissue Engineering Part C-Methods, 2010. 16(4): p. 735-749.
    80. Korff, T. and H.G. Augustin, Integration of Endothelial Cells in Multicellular Spheroids Prevents Apoptosis and Induces Differentiation. The Journal of Cell Biology, 1998. 143(5): p. 1341-1352.
    81. Wang, W., et al., 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials, 2009. 30(14): p. 2705-15.
    82. Park, I.S., J.W. Rhie, and S.H. Kim, A novel three-dimensional adipose-derived stem cell cluster for vascular regeneration in ischemic tissue. Cytotherapy, 2014. 16(4): p. 508-22.
    83. Bhang, S.H., et al., Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials, 2011. 32(11): p. 2734-2747.
    84. Bartosh, T.J., et al., Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(31): p. 13724-13729.
    85. Amos, P.J., et al., Human adipose-derived stromal cells accelerate diabetic wound healing: impact of cell formulation and delivery. Tissue Eng Part A, 2010. 16(5): p. 1595-606.
    86. Rustad, K.C., et al., Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials, 2012. 33(1): p. 80-90.
    87. Lee, W.Y., et al., The use of injectable spherically symmetric cell aggregates self-assembled in a thermo-responsive hydrogel for enhanced cell transplantation. Biomaterials, 2009. 30(29): p. 5505-13.
    88. Schmidt, S. and P. Friedl, Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms. Cell Tissue Res, 2010. 339(1): p. 83-92.
    89. Almond, A., Hyaluronan. Cellular and Molecular Life Sciences, 2007. 64(13): p. 1591-1596.
    90. Lin, R.-Z. and H.-Y. Chang, Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnology Journal, 2008. 3(9-10): p. 1172-1184.
    91. Kunz-Schughart, L.A., M. Kreutz, and R. Knuechel, Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology. International Journal of Experimental Pathology, 1998. 79(1): p. 1-23.
    92. Kim, J. and T. Ma, Endogenous Extracellular Matrices Enhance Human Mesenchymal Stem Cell Aggregate Formation and Survival. Biotechnology Progress, 2013. 29(2): p. 441-451.
    93. Liao, T.Q., et al., N-Isopropylacrylamide-Based Thermoresponsive Polyelectrolyte Multilayer Films for Human Mesenchymal Stem Cell Expansion. Biotechnology Progress, 2010. 26(6): p. 1705-1713.
    94. Takezawa, T., Y. Mori, and K. Yoshizato, CELL-CULTURE ON A THERMORESPONSIVE POLYMER SURFACE. Bio-Technology, 1990. 8(9): p. 854-856.
    95. Tsai, C.C., et al., Oct4 and Nanog Directly Regulate Dnmt1 to Maintain Self-Renewal and Undifferentiated State in Mesenchymal Stem Cells. Molecular Cell, 2012. 47(2): p. 169-182.
    96. Bartosh, T.J., et al., 3D-model of adult cardiac stem cells promotes cardiac differentiation and resistance to oxidative stress. Journal of Cellular Biochemistry, 2008. 105(2): p. 612-623.
    97. Lin, S.J., et al., Enhanced cell survival of melanocyte spheroids in serum starvation condition. Biomaterials, 2006. 27(8): p. 1462-1469.
    98. Gonzalez-Cruz, R.D., V.C. Fonseca, and E.M. Darling, Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012. 109(24): p. E1523-E1529.
    99. Yeh, H.Y., B.H. Liu, and S.H. Hsu, The calcium-dependent regulation of spheroid formation and cardiomyogenic differentiation for MSCs on chitosan membranes. Biomaterials, 2012. 33(35): p. 8943-8954.
    100. Cho, H.H., et al., Overexpression of CXCR4 increases migration and proliferation of human adipose tissue stromal cells. Stem Cells and Development, 2006. 15(6): p. 853-864.
    101. Potapova, I.A., et al., Mesenchymal stem cells support migration, extracellular matrix invasion, proliferation, and survival of endothelial cells in vitro. Stem Cells, 2007. 25(7): p. 1761-8.
    102. Yeh, H.Y., et al., Substrate-dependent gene regulation of self-assembled human MSC spheroids on chitosan membranes. BMC Genomics, 2014. 15: p. 10.
    103. Park, E. and A.N. Patel, Changes in the expression pattern of mesenchymal and pluripotent markers in human adipose-derived stem cells. Cell Biology International, 2010. 34(10): p. 979-984.
    104. Lin, H.R., et al., Purification and differentiation of human adipose-derived stem cells by membrane filtration and membrane migration methods. Scientific Reports, 2017. 7: p. 40069.

    QR CODE
    :::