跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳虹穎
Horng-Ying Chen
論文名稱: 鐵電型液晶材料光熱相變研究
Phase transition in ferroelectric liquid crystal
指導教授: 羅夢凡
nine
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 91
語文別: 中文
論文頁數: 75
中文關鍵詞: 相變
外文關鍵詞: liquid crystal, phase transition
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用高精密的比熱量測系統量測自由懸浮薄膜C7鐵電型液晶材料從Sm-A到Sm-C相變化過程中比熱趨勢的變化,我們發現比熱變化的趨勢和厚度的變化有相當程度的相依性,仔細分析熱滯量後發現這個相變隨著維度的減少而出現從一階相變到二階相變的過渡情形,這個實驗的結果和液晶材料MDW1397的結果相當類似。此外,我們觀察了C7這個液晶材料中從Sm-C到Sm-G的相變,這個相變出現了逐層相變的現象,且藉由分析此現象,我們發現了Thermal- Casimir force 在這個相變中扮演了重要的角色。


    High-resolution heat-capacity measurements have been conducted near the Sm-A to Sm-C transition in free-standing films of liquid-crystal compound C7. We find that the profiles of associated heat-capacity anomalies are strongly thickness-dependent and exhibit a novel crossover behavior in reduced dimensions. This result is similar to the observed in MDW1397 liquid-crystal films. Furthermore, heat-capacity measurements have provided the direct confirmation of surface transitions from Sm-C immediately to the Sm-G phase in C7. The molecular interactions are found to be Thermal-Casimir force.

    第一章 導論..…………………………………………...……..………1 第二章 相變理論簡述……………………………...……..…………6 2-1 平均場理論與二維缺陷熔化理論…………...….…..…….…6 2-2 AC 相變的歷史……………………………...……..…….…14 第三章 液晶超薄膜比熱儀與光反射量測實驗系統………....23 3-1 一維熱流模型……………………………...……………...…23 3-2 Ac比熱量測系統………………………...……..………....…28 3-3 光反射原理與量測系統………………...……..………….…31 3-4 液晶薄膜層數校正…………………...………...………....…35 第四章 數據分析與結果…………………...………...………....…42 4-1 C7層數校正……………….……..…...………....……….….42 4-2 SmA-SmC相變……………...…………………....………….44 4-3 SmC-SmG相變……………...…………...….…....………….48 第五章 結論……………...…………...…………..……....………….64 參考文獻……………...…………...…………..……....……...……….66

    [01] 相變與臨界現象;赫伯林著;凡異出版社(民國74年)。
    [02] C. R. Lo, Master’s Thesis, National Central University(2000)
    [03] C. Y. Young, R. Pindak, N. A. Clark, R. B. Meyer, Phys. Rev. Lett. 40,
    773 (1978).
    [04] B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978).
    [05] D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979).
    [06] A. P. Young, Phys. Rev. B 19, 1855 (1979).
    [07] B. D. Swanson, H. Stragier, D. J. Tweet, and L. B. Sorensen, Phys.
    Rev. Lett. 62, 909 (1989).
    [08] J. M. Kosterlitz and D. J. Thouless, J. Phys. C5, L124 (1972), J. Phys. C6, 1181 (1973).
    [09] A.J. Jin, M. Veum, T. Stoebe and C. C. Huang, Phys. Rev. Lett. 74, 4863 (1995).
    [10] T. Stoebe, C. C. Huang, and J. W. Goodby, Phys. Rev. Lett. 68, 2944
    (1992)
    [11] Kerson Huang, “Statistical Mechanics”, Wiley (1987)
    [12] L. Qnsager, Phys. Rev. 65, 117 (1944).
    [13] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 22, 1133 (1966).
    [14] S. A. Solla and E. K. Riedel, Phys. Rev. B 23, 6008 (1981).
    [15] B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978).
    [16] D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979).
    [17] A. P. Young, Phys. Rev. B19, 1855 (1979).
    [18] B. D. Swanson, H. Stragier, D. J. Tweet, and L. B. Sorensen, Phys.
    Rev. Lett. 62, 909 (1989).
    [19] P. G. de Gennes, Mol. Cryst. Liq. Cryst. 21, 49 (1973).
    [20] C. R.Safinya, M. Kaplan, J. Als-Nielsen, R. J. Birgeneau, D. Davidov,
    J. D. Litster, D. L. Johnson, and M. Neubert, Phys. Rev. B 21, 4149 (1980).
    [21] C. C. Huang and J. M. Viner, Phys. Rev. A 25, 3385 (1982).
    [22] T. Stoebe, L. Reed, M. Veum, and C. C. Huang, Phys. Rev. E 54,
    1584 (1996).
    [23] R. Shashidhar, B. R. Ratna, Geetha G. Nair, and S. Krishna Prasad,
    Phys. Rev. Lett. 61, 547 (1988).
    [24] H. Y. Liu, C. C. Huang,T. Min, M. D. Wand, D. M. Walba, N. A. Clark,
    Ch. Bahr and G. Heppke, Phys. Rev. A 40, 6759 (1989).
    [25] T. C. Pan, Master’s Thesis, National Central University(1999)
    [26] P. Sullivan and G. Seidel, Phys. Rev. 173, 679 (1968).
    [27] R. Geer, T. Stobe, T. Pitchford, and C. C. Huang, Rev. Sci. Instrum 62,
    415 (1991).
    [28] A. J. Jin, Ph.D. Thesis, University of Minnesota ,P52 (1995).
    [29] HS1-I Microscope Hot Stage and Temperature Controller (Use’s
    Manual).
    [30] R. Geer, Ph.D. Thesis, University of Minnesota (1991).
    [31] M. Born and E. Wolf, Principles of Optics, Pergamon, Oxford (1975).
    [32] C. Rosenblatt and N. Amer, Appl, Phys. Lett. 36, 432 (1980).
    [33] A. J. Jin, Ph.D. Thesis, University of Minnesota ,P53-P57 (1995).
    [34] C. Y. Chao (unpublished).
    [35] E. B. Sirota, P. S. Pershan, L. B. Sorenson and J. Collet, Phys. Rev. B
    36, 2890 (1987).
    [36] Y. H. Liu, Master’s Thesis, National Central University(2000)
    [37] Ch. Bahr and H. Heppke, Phys. Rev. A 41, 4335 (1990).
    [38] Ch. Bahr and D. Fliegner, Phys. Rev. A 46, 7657 (1992).
    [39] Ch. Bahr and D. Fliegner, Phys. Rev. Lett. 70, 1842 (1993).
    [40] D. R. Link, J. E. Maclennan, and N.A. Clark, Phys. Rev. Lett. 77, 2237
    (1996).
    [41] C. Y. Chao, C. R. Lo, P. J. Wu, Y. H. Liu, D. R. Link, J. E. Maclennan,
    N. A. Clark, M. Veum, C. C. Huang, and J. T. Ho, Phys. Rev. Lett. 86,
    4048 (2001).
    [42] P. M. Johnson, D. A. Olson, and C. C. Huang, Phys. Rev. E 62, 8106
    (2000).
    [43] L. V. Mikheev, Sov. Phys. JETP 69, 358 (1988).
    [44] A. Ajdari, L. Peliti, and J. Prost, Phys. Rev. Lett. 66, 1481 (1991).
    [45] Hao Li and Mehran Karder, Phys. Rev. Lett. 67, 3275 (1991).
    [46] L. V. Mikheev, Phys. Rev. Lett. 69, 860 (1992).
    [47] M. L. Lyra, M. Kardar, and N. F. Svaiter, Phys. Rev. E 47 ,3456 (1993).
    [48] A. Ajdari, L. Peliti, and J. Prost, J. Phys. II 2, 487 (1992).
    [49] B. D. Swanson, H. Stragier, D. J. Tweet, and L. B. Sorensen, Phys.
    Rev. Lett. 62, 909 (1989).
    [50] Brian D. Swanson, Ph.D. thesis, University of Washington (1993).
    [51] Brian D. Swanson and Larry B. Sorensen, Phys. Rev. Lett. 75, 3293
    (1995).
    [52] H. Y. Chen (unpublished).
    [53] P. Ziherl, R. Podgornik, and S. Zumer, Phys. Rev. Lett. 84, 1228 (2000)

    QR CODE
    :::